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ABSTRACT q‘*

All communication systems are subject ot approximation error. An in-
evitable source of error is the difference between the realized signals
and filters and the intended ones. In general, quantative analysis of the
effect of these discrepencies is quite difficult, and even the selection
of an error criterion that is both physically meaningful and mathematically
tractable may be a problem in itself. However, for a large class of receivers,
the so called correlstion detectors or matched filters, an error analysis
free of the signal and filter detail can be carried out. The nature of these
receivers makes the choice of the mathematically tractable integral-squared-
error criterion a physically meaningful one. Some of the factors which may
cause the actual performance of matched filter receivers to be less than
their expected performance are: (1) The matched filters may deviate from
their intended design or the transmitted signals may be different from their
designed waveforms; (2) The channel may alter the waveforms of the transmitted
signals; (5) If a discrete receiver is used, it may not be a sufficiently
good approximation of the analog receiver.

The effect of these discrepencies on probability of error for three
binary systems is considered. Bounds are obtained on degradation of perform-
ance of On-Off, Antipodal, and Orthogonal Signal Systems due to mismatching
of the signals or the filters. It is shown that the Equal-Energy-Orthogonal-
Signals System is potentially the most sensitive of the three systems

considered, and that for this case, mismatching of the signals is more serious

than the same amount of mismatch in the filters. A o] A 'O L/
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In an attempt to compensate for the errors due to (2), procedures are
developed which allow the transmitted signals to be "p;e:distorted" in order
that the received signals have a desired relationship (e.g. the transmitted
signals might be constructed so that the received signals are orthogonal).

Examination of the error arising from (3) brings to light some subtleties
concerning the discrete receiver, particulériy the concepts of finite-
dimensional signal representation. In connection with this latter problem
we derive some useful and computationally simple expressions for the approx-
imation error incurred in approximating a countable sum of exponentials by

an element of the subspace spanned by a finite number of other exponentials.
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Chapter 1
INTRODUCTION

1.1 Signal Design in Communication Systems

It is probably true that, as stated by Brennan [9 ], "in the last
analysis, communication systems are designed by' seat-of-the-pants / engineering
let no forest of formulae --- suggest otherwise." The role of "Communication
Theory" has been one of providing upper and lower bounds on the performance of
communication systems. By analysis based on more or less idealized models
of real communication systems, limits on performance has been obtained, thus
by-passing profitless experiments and innovations. The fact that long
established "seat-of-fhe-pants-engineered" systems are already operating
very close to attainable limits does not detract from the results of
communication theory in providing these limits.

The above quotation concerning design of real communication systems is
certainly revelent to that part of communication system design concerning the
information-bearing signals. Nonetheless, studies of the properties of
signals, their selection, optimization, realization, etc., are important
and useful in their own right, although immediate application in this or
that communication system may not be evident. A study of systems without
signals and viceversa is neither meaningful nor feasible. There is invariably
a joint concern for the signals and systems. A collection of papers dealing
with signal theory in relation to system theory (not necessarily communication
system theory) mey be found in [34].

In digital communication systems, application of statistical decision

theory has proven to be of value not only in providing limits of performance,
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but also in suggesting ways by which better digital systems may be built.
The statistical decision theory approach is not without its limitations, and
it is certainly no panacea for communication problems. Not the least of
its limitations is the functional complexity involved when the signals are
corrupted by other than additive gaussian noise. The "information" is conveyed
in a digital communication by the decision as to which one of several possible
signals has been transmitted. By assigning costs to various types of errors,
a receiver structure which minimizes the average cost may, in some cases,
be found. In an "optimum" receiver structure can be derived for arbitrary
signals, the aversge cost may, in principle, be further reduced by proper
choice of the transmitted signals. The "proper choice” of the transmitted

signals is influenced by the channel, or media, through which the signals

propagate, and the properties of the noise corrupting the signals. With perhaps

one exception [35], minimum cost or Bayes receivers are developed on the
assumption that the received signal is neither preceded nor followed by any
other signal. That is, the effect of signal-overlap is either ignored or is
assumed to have little effect on the system. The selection of optimum signals
to enhance the performance of a Bayes receiver is, of course, precluded
when the form of the receiver is not known (eq. for non-gaussian noise,
general multiplicetive disturbances, overlapping signals etc.). Even when
the optimization procedure may be successfully carried out and the waveforms
of the optimum signals explicitly presented, practical considerations may
prohibit actual generation of the optimum signals. At any rate, the
performance of 'more practical" signals be compared to that which might be

obtained using the optimum signals.

1.2 Approximation and Error

All comunication systems are subject to approximation error whether

it comes about from the inevitable differences in the actual signals, filters,




-3.
etc. and the intended ones, or more basically, the difference in the actual
system and the model on which the analysis was based. In general, quantitative
analysis of the effect of these discrepencies is gquite difficult, and even
the selection of an error criterion that is both physically meaningful and
mathematically tractable may be a problem in itself. In general, different
communication systems with their given signals, channels, and receivers are
subject to different analysis as regards their sensitivity to changes or
derivations in their signals, filters, etc. However, for a large class of
receivers, the so-called correlation detectors or matched filter, an error
snalysis free of the signal and filter detail can be carried out. Under the
assumptions of fixed signals and additive gaussian noise, the receiver
structure obtained from the Bayes formulation takes the form of a correlation
detector. The decision as to which signal was transmitted is based on the
magnitude and sign of a statistic obtained by correlating the input data
with known signal data. The number obtained by this process is proportional
to the amount of energy in the signal during the correlation time interval.
The fact that for these systems the performence is affected only by the
apparent loss or gain of energy during the observation time interval makes
the integral-squared error criterion ideally suited for examining the

sensitivity of performance to deviations in the signals and filters.

1.3 Factors which affect System Performance

The degradation of the expected performance of matched filter receivers
may come about for several reasons:
(1) The channel may alter the waveforms of the transmitted
signals
(2) The matched filters may deviate from their intended design
(3) The discrete receiver may not be a sufficiently good

approximation of the analog receiver.
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The overall system considered here may be visualized as having a channel
consisting of a waveform distorting filter followed by additive gaussian
noise, and a receiver which is a correlator or matched filter.

The effect of these errors on probability of error for three binary
systems is considered in Chapter II where the criterion of approximation error
is taken to be the integral-squared-error. In Chapter III, procedures are
developed to compensate for the waveform-distortion of the channel. The
transmitted signals are "pre-distorted" so that the received signals have a
desired relationship. Consideration of the error arising from (3) brings
to light some subtlties concerning the discrete receiver, and in particular,
the concept of finite-dimensional signal representation and the choice of

coordinates used in the discrete receiver.

1.4 Outline of the Thesis

Chapter II is concerned mainly with the effects of filter and signal
mismatch for three important binary systems. We show that for the on-off
and antipodal systems, the sensitivity of performance (probability of error)
is a function of only the magnitude of the integral-squared-error between the
intended signal and the actual signal. Moreover, the same degradation in
performance is obtained whether the erfor is due to the fact that the intended
signal and the actual signal are different, or whether the actual matched
filters differ from the ideal matched filters. The most interesting case
is that of an equal-energy orthogonal-signal system. In contrast to the
above two cases, we show that the character of the approximate signals (not
Just the magnitude of the integral-squared-error) has considerable influence
on system performence. Also, for the same magnitude of error, it is shown
that the cases of "imperfect signals and ideal filters," and “imperfect

filters and ideal signals" are significantly different. In particular,
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filter approximation error is found to be less serious than signal
approximation error. Bounds are obtained on the sensitivity of performance
for a given approximation error.

The first part of Chapter II provides motivation for the latter part,
and deals with the selection of optimum signals to provide maximum signal-
to-noise ratio at the receiver. It is shown that even for colored noise,
the optimum receiver is a matched filter when the signal is optimum thus
providing justification for consideration of only matched filter receivers.

Chapter III considers one source of the mismatched error considered in
Chapter II; channel distortion of the transmitted signals. If the signals
are received in the presence of white gaussian noise, it is well known that
the total probability of error depends only on the pair-wise correlations
(or inner products) of the received signals. Computationally simple
procedures are developed which provide transmitted signals having the property
that the received signals have a desired inner product matrix. The functional
form of the channel is not required. It is required only that the channel be
linear and that the inner products of the output signals can be measured by
any convenient method. However, even when the construction procedure is
carried out exactly, approximation error of the type considered in Chapter II
must still be considered due to the approximation of the method used to
measure the inner products of the output signals. As a matter of convenience,
the receiver may be of the discrete type which operates on some N-tuple
representation of the signal such as its time samples. In any case, the
actual signals must be analog wayeforms whether the receiver is discrete or
not.

In Chapter IV we examine some aspects of the problem of characterizing a

time waveform by an ordered N-tuple. If the filters are approximated by a
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finite linear combination of other functions (e.g. by a lumped parameter
filter), the effect of the approximetion errof is given by the result in
Chapter II. Also, if the receiver is constrained to the use of particular
coordinates, or if the number of coordinates is constrained, intriging
but apparently quite difficult mathematical problems are uncovered.
Abstractly, the problem becomes that of finding "best" finite-dimensional
representations for given classes of signals. An attempt is made to make
precise the intuitive notion of a set of signals being "essentially finite-
dimensional. Even for mathematically well defined sets of signals, the
problem is extremely difficult. For actual signals, the problem is compounded
by the inability to adequately describe the ensemble of signals. Practically,
all one can do is choose a finite set of representation functions and compute
the resulting approximation error. A particularly convenient set (both
mathematically and physically) of representation functions are the'exponential
functions as has been amply demonstrated particularly by W.H. Huggins and
his co-workers at Johns Hopkins University. In this connection, we develop
some rather remarkably simple and computationally useful approximation-
error expressions for representation by exponential functions which further
extends the usefulness of the exponential functions.

Although explicit results were not obtained for the problem of finding
"best" approximating functions for a prescribed class of signals, some useful
bounds were obtained on the maximum error to be expected using any set of N
functions to approximate any one of a set of M signals. Also we examine
the effect of the number of required signal coordinates for the case of

conditional maximum likelihood estimates of the signal coordinates.




Chapter 2

SIGNAL SELECTION AND MISMATCH ERROR

2.1 Introduction

In the design of communication receivers it is invariably the case
that the actual receivers or filters differ from their intended design.
Moreover, due to the properties of the propagation media, the received
signals differ from those for which the receiver was designed. These
discrepencies may lead to a significant degradation in overall system
performance especially in the case where the receiver is designed to
receive orthogonal signals. It is possible that by proper selection
of the signals to be transmitted, the performance of the system may be
improved. This is the case if the channel is such that the received
waveforms differ from the transmitted waveforms. Here the transmitted
waveforms are selected so that the received waveforms arrive with the
largest possible energy. If the additive noise is not white, the signals
may be selected so that their energy is concentrated in that portion
of the frequency bound where the noise power density is lower. Explicit
expressions can be developed for the optimum trensmitted waveforms
although actual solutions are difficult to obtain. Even if the form of
the "best" waveform is obtained, practical considerations may prohibit
actual construction, and other signals which are easier to generate
accurately may be sought whose performance is "close" to that of the
optimum signal. Some examples .are given in this chapter where explicit

solutions for optimum waveforms are obtained and their performance compared
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with other signals chosen on the basis of their ease of generation. The
degree to which system performance is degraded due to the deviations‘bf
the actual signals and filters from the intended cnes is examined for
binary systems utilizing three types of signaling schemes; on-off,
orthogonal, and anti-podal signals; Bounds on the degradation in
probability of error due to approximetion errors are obtained where the
receiver structure has the form of g matched filter. Since the optimum
receiver is a matched filter for the case where the noise is white, and
it is easily shown that for the case where the noise is colored, the
optimum receiver is also a matched filter if the optimum signals are
used, it suffices to consider the problem of finding the degradation
in performance due to the deviation of the actual signals from the
intended signals and the deviation of the actual filters from the intended

matched filters.

2.2 Correlation Detectors and Matched Filters

A filter with impulse response h(t) is said to be matched to a signal
x(t) if h(t) = K x(a-t) where K and o are arbitrary reasl constants. If
a signal &zf) is appliéd to a filter whose impulse response is given by
n(t) = x(T-t), the filter output y(t) is given by

t
J[\ y(7) n(t-t)dr

0

t
k/\ y(7) x(T-t-1)dt.

0

y(t)

The value of y(t) at time T is then given by

T
y(T) = Jf yv(t) x(7)dr.
0
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The number obtained by multiplying x(t) by y(t), integrating the product
from t=o0 to t=T is the same as the nﬁmber obtained by sampling, at t=T,
the output of a filter with impulse response h(t) = x(T-t) when y(t) is
the input to the filter. For this reason, the operatibn 6f correiafing
x(t) with y(t) (multiplying x(t) by y(t) and integrating from t=o to t=T)
is said to be equivalent to passing y(t) through a filter matched to x(t).

If a linear filter with impulse response h(t) acts on an input w(t) =
x(t) + n(t) where x(t) is a known time function and n‘t), the noise, is
a sample function from a wide-sense stationary random process, the output
signal-to-noise ratio

. )

S
¥ Em 2]

is maximized at t = T if h(t) is the solution to the integral equation

T
j" R_(t-B) h(B)aB = x(T-t) 0 <t <T
0 )

If the noise is white, Rnn(t-B) = 8(t-B), and h(t) = x(T-t). That is,
the filter is matched to x(t). The signal component of the output, y(t),

evaluated at t = T has thebvalue

T
y(T) =f xe(t)dt = Ej

0

called the energy(l) in x(t) over the time interval (0,T).

2.3 Optimum Waveforms for Signals in Colored Noise

The optimum (minimm probability of error) receiver structure for
deciding whether "signal plus noise" or "noise only" was present during

the observation interval (0,T) is a matched filter if the noise is white
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and gaussian [1].The signal component of the output of the matched filter
at t = T is givenvby ET =\/;T xg(t). The expected value of the output
noise component at t = T is given by NoE where No is the spectral density
of the noise. For any signal x(t) with energy(l) E, the value of the
output of the matched filter at‘t = T is the same. The choice of signal
waveform, then, does not influence the system performance so long as the
filter is matched to the signal and the background noise is white. If the
background noise is colored, however, one can find signals whose wavéforms
are perferable to others as is shown by Middleton [2]. Here we derive the
same result and use it to show that the optimum filter in this case is
also a matched filter if the signal is the optimum signal. That is, the
optimum filter is simply a filter matched to the signal which produces the
maximum signal-to-noise ratio.

Suppose the additive gaussian noise has an autocorrelation function
Rnn(T)- The optimum receiver structure for deciding "signal plus noise"
or "noise only" is a filter with impulse response h(t) where h(t) satisfies

the integral equation [1]

T
Jf Rnn(t-r) h(t)ar = =x(T-t). (2-1)
0

Since the input noise is gaussian, the sample at t = T of the output of the
filter is a gaussian random varisble whose mean is the output signal component
“o(T)' The probability of error may be decreased further by choosing the input
signal x(t) so as to maximize the signal-to-noise ratio defined by

o 2

Yo (T)

Ehloz]

=

s
N

(1) Although the term "energy" is widely used to denote the integral of the

’ square of a time function, it is best to point out here that it does not
represent the energy supplied to the filter. The energy supplied to the
filter is proportional to the integral of the square of the input signal
only if the input impedance is purely resistive.
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where n, is the noise component of the output of the filter. The expected

value of the square of the output noise sample at t = T may be‘written as

2 T 2
E[n "] = E{Jr n(t) x(T-7) as)
° 0 , . (2-2)
T AT
= [T ] Ry(e-8) 5(x) (e) avce.
0 0 S o
The square of the output signal component at t = T is given by
2 T 2
5,01 = [ [ h(e) x(z-v) ar) (2-3)
0
substituting eq.(2-1) into eq.(2-2), we have
~T
] x(T-) h(B) 4B (2-k)
0
Dividing eq.(2-3) by eq.(2-L4) yields
S T
5 - f h(t) x(T-7) dr (2-5)
0 .

but by the schwortz inequality, (2-5) is maximum when
h(t) = x(T-1)
From eq.(2-1) we have that

T
JREMCURICOE RS SCONEERLELRNCD

9]

This equation has solution when k- Aj, =1, 2, ... where Aj are the

eigenvalues of (2-6). Using the jth eigenfunction as a signal, it is
seen that the optimum filter is still a matched filter, producing a

S/N of
T

§/N = g fo s2(1-B) 4B = E A (2-7)
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We seek then the eigenfunction corresponding to the largest eigenvalue. Of
course the eigenvalues may become arbitrarily large (i.e. there exists no
largest eigenvalue) indicating that without further restrictions, one can do
arbitrarily well in colored noise. This is always the case if the noise
has become colored by passing through a physically realizable filter. This
is, of course, intuitively obvious if, say the noise spectrum falls off as
0(52), one would place the signal at a high enough frequency so that the
lgiel of the noise is negligible. The above is true if no bandwidth
constraints are placed on the signal. It seeems to be extremely difficult

to place such constraints in a variational problem of this type.

2.4 Optimum Waveforms for Channels with Impulse Response h(t)-

It is implicit in the above discussion that the receivedrwaveform
has the same waveform as the transmitted waveform. In the following, it
is assumed that the transmitted waveform x(t) has passed through a filter
with impulse response h(t) where the outpuf y(t) is corrupted by additive

stationary white noise (Fig. 2-1)

Y +
p 4 h
4}¢,

Channel With Impulse Response h(t). "

Fig. 2-1

As has been previously demonstrated, there is no preferred signal
waveform when the additive noise is white; all signals with equal energy
are equally desirable. It follows then that x should be selected so as
to maximize the energy in y (with an energy constaint on x) during the

observation time T.
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The 1950 paper by Chalk [4] provides a partial solution to this problem.
This paper was primarily concérned with the interference problem and
essentially attempts to find the pulse type waveform which maximizes the
energy received in the whole interval (0, »). The extension to the case
above is easily done although a time domain approach seems to yield the
answer in a more straight forward manner.

Specifically, let the channel be represented'by its impulse response
h(t). We wish to find the input pulse x(t) having unit energy which is
non-zero only on (0, T) which maximizes the energy received in (0, T) at

the output. Now

t T
y(t) = f n(t-) x(@)da = f n(t-a) p(t-a) x(a) o (2-8)
o
0
where the right hand side of (8) expresses the fact that h(t) is realizable
(h(t) = 0 t < 0) and also allows use of definite limits. p is the unit step
1l x>0

function defined as p(x) =-{

0 x =0 - Then writing the square of (8) as

an iterated integral we have

v2(¢) = f j f n(t-0) h(t-8) n(t-a) n(t-B) x(e) x(B) ax ap
0 ) 0

T
The output energy E_ = d/\ yg(t) dt is given by
° (2-10)

T T T
E = fo fo fo h(t-a) h(t-B) u(t-a) n(t-B) x(a) x(B) dx ag dt

Define

T
f h(t-a) h(t-B) p(t-a) p(t-8) at = H(a, B) (2-11)
0
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Then from (2-10) we have
AT AT
E, = Jf Jf H(a, B) x(a) x(B) dx ap (2-12)
0 0 T
We wish to maximize (2-12) subject to the constraint that\/\ x2(a) a = 1.
0

The solution may be obtained directly via a theorem [3] that the maximum

of (2-12) is obtained when x(a) is an eigenfunction of the integral equation
T
x(a) = f H(e, B) x(B) aB (2-13)
0

corresponding to the largest eigenvalue. The maximum of (2-12) is equal to
the largest eigenvalue of (2-13).

From (2-11) it is seen that H(a, B) = H(B, @), i.e. H is symmetric.
The optimum signals then enjoy the special properties of eigenfunctions of
integral equations with symmetric kernels [3]. The eigenfunctions are
orthogonal, the eigenvalues are regl and (by virtue of (2-10) positive.
Moreover the output signals due to these eigenfunctions are also orthogonal
over (0, T). If x(t) is the j*" eigenfunction of (2-13) with Ep = 1, then
the response to x(t) has energy A; some of these properties will be made
use of in Chapter IV.

We note here that maximizing the energy in (0, T) at the output does
not imply that the energy outside T is minimized. Considerable interpulse
interference may result if the input pulses are transmitted every T seconds.

An interesting property of these optimum signals is that in order to

meximize the output energy in (0, T) for a realizable h(t), the input must

be driven to zero at t = T. This is seen by noting from (2-11) that

H(T, B) = 0, then from (2-13), x(T) = 0.
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We now consider an example using a simple RC circuit, where the form of

the optimum signals may be obtained.
Example: Iet h(t) = e ~Pt w(t), which is the impulse response of a

lowpass RC circuit. Then

T
H(a, B) = b° f h(t-a) h(t-B) u(t-a) u(t-B) at (2-1k4)
0 , ,
T
- b2f "2t b(oB) g, B>a
B
T (2-15)
b2f ¢ 2Pt eb(a+B)dt B<a
a
_ % [e ~2bB__-2bT JEb(a+B) B>a
(2-16)
_bé [€-2ba_€-2bT]€b(a+B) 5 <a

T
_We wish to solve A g(a) = f H(a, B) ¢(B) dp
, )

Q T
(@) = f H(a, B) P(B) ap + f H(a, B) #(B) 4B - (2-17)

0 04

B<a B>a

Substituting (2-16) into (2-17) we have

04
2 - [ T g6 a0 - 2T [P ) ap

(2-18)
x a
s fT P g(8) ap + P 2T fT ™ g(p) ap

Differentiating (2-18) with respect to &, we have

2 M(a) = ™ foa *P 4(B) ap - ™ e‘mfoa *P ¢(p) ap

b
o . (2-19)
-eb"‘j:r e P g(p) ap + ™ e'2beT P #(p) ap -
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Subtracting (2-19) from (2-18) yields

. a .
,% A(a) - §§ M(a) = 2 e'ba\/; PP ¢§B? apg . (2-20)

Differentiating (2-20), we have

. . a
2 (o) - fﬁ WM(@) = -2 ¢ fo PP g(p) ap + 2 p(a).  (2-21)

Multiplying (2-20) by b and adding (2-21) yields finally

plo) + = T 2 b2 g(a) = o (2-22)
. . 2 1 - A
The solutions of (2-17) must then satisfy (2-22). Let 8" = -
The solution of (2-22) has the form
B(t) = A cos bt + B sin Bbt. (2-23)

We have additional information that, as was noted earlier, ¢(T) = 0.

This requires that
tan 3bT = - A/B (2-2k)
rewriting (2-23), we have

#(t) = B [-Tan BbT cos Bbt + sin &bt]. (2-25)

Since the solution of (2-17) is independent of B, we replace it by unity.

With X replaced by-—i; in (2-17), (2-25) is substituted into (2-17) to

2
1+8
determine d or d's that satisfy the integral equation (2-17). It turns

out that (2-25) satisfies (2-17) if

Tan &bT = - & (2-26)
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Verification that this is true is straightforward but is rather tedious
and is omitted here.
We solve (2-26) for the case bT = 1. By trial and error we find the

smallest non-zero solution of (2-26) to be

2.029 < 8 < 2.030

and 0.1952 < A < 0.195L. T,
y () at
0

That is, the maximm ratio of ————————  for this system is about

j; Tx2(t) dt

0.195 (for bT = 1), and is attained with input signals of the form (2-25),

where 8 is given by (2-26).

Differential Equation Formulation

For illustrative purposes, the problem is now formulated utilizing the
differential equation of the simple RC circuit. The input x is related to

the output y by the differential equation

¥ + by = bx (2-27)

T T

we now seek to maximize\/\ ye(t) dt while constraining\/n xa(t) dt to say
0 0

unity. Eguivalently, we seek to extremize the integral

- [ T[f(t) ARy 3o Y | e (2-28)
0

= f Y ) a (2-29)

0 ‘ '

For which the Euler equation [5]
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becomes

' - 1.2
yr 252vfy =0 (2-31)

Two end conditions are needed here. One is found by noting that for
square integrable inputs, the output is zero at t = 0, i.e. y(o) = 0.

The other comes from the undetermined right end point condition

of
=0 (2-32)
3y t =T ]
or
Syt =0 (2-33)
t =T 4

but x = % y +y so (2-33) implies x(T) = O, agreeing with the general
condition found earlier that the opfimum signal for any realizable filter
drives the input to zero at t = T. The general solution of (2-31) (for

0 <A <1) is given by

y(t) = A cos Bt + B sin &bt (2-34)
1-_ .2 . : . 4
where N 8”. Imposing the above endpoint conditions yields

y(t) = B sin &bt (2-35)
where ® is given by
Ten T = - & (2-36)

This solution agrees with the previous solution as it should, and
was obtained with a good deal less effort. Although the formulation of the
problem in terms of the impulse response of the filter is more general,
explicit solutions of equations such as (2-13) with finite limits are known

only for a few special types of kernels.— Sinée if the filter is such that
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the input and output are related by an ordinary differential equation, the
solution of (2-15) must reduce to the solution of an Euler equation derived
using the differential equation, it is more direct to use the differential
equation approach. Moreover, there seeems to be no way of including endpoint
constraints using the integral equation approach. For systems of higher
order one encounters the well known difficulties of solving differential
equations with conditions specified at each endpoint, leading to solution
of sets of transcendental equations. However, the actual waveforms are not
asTimportant as finding the largest possible values Q =v/;Ty2(t) at /

[ x2(t) dt and comparing this value with the performance obtained from sig-
J

ngls that are more essilyand accurately generated. For example, if we
select x(t) = e'Ut the system is being driven at its natural frequency,

and we would expect fairly good performance. For bT = 1 we find that
R=0.97Q_ -

We note that input signals of the form (2-26), x(t) = & cos &bt + sin &bt,
produce output signals having no transient terms. In the ffequenéy domain ‘
the input signal is such that it contains a zero where the filter has a
pole.

In the above formulations of the problem of maximizing Q, no consideration
was given to the behavior of y(t) for t > T. The other extreme of requiring
y(t) =0 fort >T may be considered using the method of Diamond and Gerst [6]
for filters whose input and output are related by an ordinary differential
equation. The penalty for requiring y(t) = 0 t > T is a decrease in Qmax'

A detailed investigation of this case is presently being conducted by H.

Schwarzlander [33] at Purdue University.
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When the output is constrained to be a pulse the solution for the RC

](2). For bT = 1, the optimum pulse producing input

circuit is given in [17
requires roughly twice as much "Energy" as does the optimum input signal

given by (2-25) (for the same output "energy" in (0, T)).

2.5 Approximation Errors

Igevitably, approximation errors arise when an attempt is made to
synthesize a matched filter for a given signal. On the other hand the
filter may be quite closely matched to the intended signal, but dispersion
of the channel, imperfect syncronization, etc. the actual received signal
may differ from the intended signal. The filter synthesis problem may play
a large role in selecting the transmitted signals i e. select those signals
whose matched filters may be more easily and accurately built.

Here we examine the effect of approximation error on probability of
error for some particular binary detection systems.

We first introduce some notation that is used neither for elegance
nor generality but is simply less cumbersome and is also easier to type.
Let\/; x(t) y(t) dt = (x, y) and call this number the "inner product of

x and "y". Then let (x, x)l/2'= |l x || which is celled the "norm" of x.

2 6 The"On-Off" Case

We consider now the problem of deciding whether a known signel x is
present along with white gaussian noise, or whether noise alone is present,

i.e. the "on-off" case. The form of the optimum receiver is well known

(2)

There is an error here; the right hand sides of Eqs. (10) and (11)
in [7] should be multiplied by RC.
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and is shown in Fig. (2-2).
( v=T > E/2 - Signal
h(t)= — 5i
" e
x(T-t) < E/2 - Noise
Fig- 2-2

Optimum Receiver for On-Off Case

In all the cases that are to follow, the two signals are considered to
have equal a priori probabilities of occurance and that the cost of misteking
either signal for the other is the same. In the "on-off" case, with signal
"energy"” E, this set of assumptions results in the receiver announcing
"signal plus noise™ if z(T) >‘g, and "noise only" if z(T) < g, where g is
called the threshold. In the two other cases to follow (equal energy
orthogonal signals, and anti-podal signals) the threshold is zero. We
examine the effects of "mismatch" of the signal and the filter. If the
selected signal is x,, the actual signal used may differ somewhat from x,,
and moreover the matched filter may also differ from the intended signal x,
We consider here that either the filter is exact, and the signal is in
error, or vice versa.

The criterion of error here is taken to be the normalized square

error
2

o = -xldl
il e

In order to insure that the error is due to mismatch and not amplitude

(2-37)

€

difference, we set || x l|2 = || x, l|2 = E where E is the "energy" in the

signal. The signal component of the output of the matched filter is E
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if the signal is present and the filter is perfectly matched to the signal.
If the filter is matched to x, and signal x is sent, the output of the

matched filter is given by (x; x,). Rewriting (2-37),

> (X-x*,X-x*)_ (x,%x) - 2(x,x,) + (x,,%,) (5.38)
Hx [T e [ x|l el
: 2 2 |
recalling that llx II = ||x* Il = E, we have
€2
(x,x,) = E [l -5 ] (2-39)
2
so that the output is degraded by the factor [1 - %— ]. The effect of this

degradation is shown in Fig. (2-4) for various values of e2. We note here
that all signals x satisfying (2-37) have the same effect on probability
of error. This is true whether the error is in the filter or in the

(3)

signal.

2.7 Equal Energy Orthogonal Signals, Mismatched Signals

For the case of detecting the presence of either of two equal energy
orthogonal signals, the previous statement is no longer true The optimum

receiver for this case is well known and is shown in Fig. (2-3).

Xx(T-t =
(T-t) N £=T >0 — Xg
( o0— Y*
 Vx(T-%)
Fig- 2"3

Optimum Receiver for Orthogonal Signals

(3)

For the on-off case, since the threshold is set at one half the expected
signal energy, part of the degradation in probability of error shown in
the curves ds due to the incorrect threshold setting. For the range of
mismatch error considered, this error is negligible compared to the
mismatch error. For the other two cases considered, the threshold is
always zero (when the signals have equal energy)




-23.

10'5 =

-6

10 1 \ " i \ ) 1 L 1
2

3 4
VE/n

Fig. 2-4
Probability of Error for Mismatched Signals or
Mismatched Filters; On-Off Case.
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If the orthogonal signals x, and y, are matched perfectly to their filters,
then the signal component of the output is E if x, is present, and -E if y,
is present. B

We now assume that the filters are perfectly matched to the intended
signals x, and y,, but that the actual signals x and y are different from
x, and y.; in‘particular to maintain symmetry, we require

g - x[]® 2
(x,5¢) = (v,x,) and : =e”. (2-ko)

IESIRNIEA

In this case, there are two sources of error; the error due to the

diminished output of the filter matched to x, caused by the mismatch of
x and x,, and the error due to the fact that x and y, may no longer be
orthogorial, and the output of the filter matched to y, due to x effectively
subtracts from the total output. This latter error turns out to be the
more significant for the "worst case" conditions.

The degradation due to the mismatch of x and x, is given by (2-39) .
The output of the filter matched to y, due to x is given by (x,y*) The
problem then becomes: Given (2-40) and the condition that (x,y,) = 0,
find (x,y,). There is, of course, no unique solution. The funétions x,
and y, aré completely arbitrary except that they are orthogonal and are”
square integrable. The function x is constrained only by the fact that is
is square integrable and is "close" to x,. The worst case arises when
(x,¥,) has the largest possible value.

"We now show that if

2
e 1] = w1 =1lx]] =1, Hxex 112 = €% = [ vy |]

and (x,,y,) = 0
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then

+
(x,y,) <€ \/ - 5;; (2-41)

That is, all the signals and filters have equal energy; the actual signals
(x and y) differ from the intended signals (x, and y,) and have the same
magnitude of error; the signals x, and y, are orthogonal. We want to show
that under these conditions, the largest possible output of the filter
matched to y, (or x,) due to signal x (or y) is given by (x,y,) <e Ji- 5121 .

To show this, we first choose a set of functions F = [fl; £y «o-]
which is complete in the space of which x, y, x, are members. This can
always be done, since this space is I.Te and is known to be separable.

2
is still complete. Form § = [¢1, ¢2, ¢3, ...] by orthonormelizing the set F’

We now form F’ = [x,, ¥, £, £, ...] by adjoining x, and y, to F. F'

where we set . = x, and ¢2 = y,- Since ¢ is complete we may expand x in

terms of the f's, i'e.
«©
x = Z &, ¢i (2-42)

in the sense that
lell2=z a” (2-43)
i=1

and the a, are given by a, = (x, ¢i)'

L
Now”x“2 = Z aiz = 1. Hence
i=1
2 2
a," +a, <1 (2-4k)
+
or a, < J1 - a12 . (2-45)
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Since x, = ¢l, and y, = ¢2, we have that

8, = (x,x,) and (y,,x) = a,- (2-46)
. e .
From. (2-39), (x,x,) =1 - 55 so that
I A
a, < V1-(1-%5) =ev1-5. (2-47)
For this "worst case", the output of the system is degraded by the
factor
2 + e?
p=(l——-§-€‘l-—E)- (2-438)

Recall now that from Eq. (2-40), we are maintaining symmetry so that
(3-38) holds for 62‘5 2 Jfé, so that 0 < p <1. The dominant degrading
*
factor in (2-48) in the second term due to the non-orthogonality of x and y

*
(or y and x ) since
/ €2 62 2
eNl - = >=5 for e <2. (2-49

The degradation in performance of an optimum receiver designed for
reception of equal energy, equally likely orthogonal signals for this
worst case condition is shown in Fig.(2-5). In Fig.(2-8), the rate of
decrease in performance vs. e2 is shown for a given initial probability
of error.

It is interesting to compare a "poor equal energy orthogonal system
with a "good" on-off system. An equal energy orthogonal signal system with
e2 = 0.08, for the "worst case” condition has the same performance as a
perfect on-off system.

In Fig. (2-8) is also shown the rate of decrease in performance vs. 62

for an on-off system. Here we have no "worst case" conditions as all signals

with the same error have the same performance.
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VE/2x,

Fig . 2-5

Probability of Error for Mismatched Signals
and Ideal Filters; Equal Energy Orthogonal
Signals(Worst Case)
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Here we are considering the case where the signals and their filters are
mismatched in the same manner so that €2 <2 -~fé. If e2 = 2 -‘Jé, X =Yy
or x = -y and the factor p becomes zero, yielding probability of error of
0.5. For €2 >2 - 2 we have the situation of each signal "looking more

like the other's matched filter" so that the probability of error is greater

than one half.

2.8 Equal Energy Orthogonal Signals: Mismatched Filters

Although at first glance it might seem that considering perfect filters
and mismatched signals is the same as the case of perfect signals and
mismatched filters. This of course is not true as one would then be led to
the conclusion that by building matched filters nearly orthogonal but
with (x,y,) <0 and (y,x,) < 0, one could improve performance (lower the
probability of error). This is naturally false, as for a giveﬁ signal,
the matched filter receiver minimizes probability of error.

The difference is due to the variance of the noise sample at t = T which

is given by

F = N \/;Th2(t) at (2-53)
where

n(t) = %, (T-t) - y,(T-t). (2-54)
Then

oF = AN E [1 - (x ¥ (2-55)

If the filters are perfect, (x,, ¥,) = O and o° = 2EN_ . Hence
regardless of the character of the signal, the variance of the noise
sample is the same as that for the ideal system, but the signal component

of the sample may be increased by having (x,y,) and (y,x,) negative.
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Considering the best possible situation where the signals are perfect
and the filters are negatively "correlated", it turns out that the increase
in the signal component of the sample is exactly offset by the increased
variance of the noise sample. Also if the filters have equal positive
correlation with the signals, and the signals have the largest positve
correlation allowable, then again, the decrease in one signal component of
the output sample is exactly offset by the decrease in the variance of the
noise sample.

For anti-podal signals (i.e. x = -y), the ideal performance is better
than the ideal "on-off" system (by 6 db) and is better than the ideal
"orthogonal®™ system by 3 db. The system consists of a filter matched to x
whose output is sampled at t = T and if greater than zero announces x, if
less than zero, -x. Here the variance of the noise remains the same, and
the signal component of the sample can only be decreased by the factor
(1 - E; ). The effect on probability of error for this case is shown
in Fig. (2-7) where some of the curves for the other two cases are given
for comparison. In all of the curves 0 < 6215 0.25.

The curves in Fig. (2-7) showing the decrease in performance as a
function of 62 for a given S/N'=-~/.E/2No indicates that the binary orthogonal
system is a potentially "over sensitive” system. It should be kept in mind
that these curves are for the worst case.

In contrast to the on-off and anti-podal systems where only the magnitude
of the error affects the performance, i.e. all signals x such that le-x* ||2= €
have the same effect on probability of error, the orthogonal system is
sensitive to the character of the error. The mismatch of signals may improve,
degrade, or leave unaffected the probability of error. Also, for the on-off

and anti-podal systems, it makes no difference whether the error is in the
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filter or in the signals. This is not true for the orthogonal system.

For the orthogonal system we now examine the "worst case" for perfect
signals and mismatched filters which is considerably differenﬁ from the
situation of perfect filters and mismatched signals. As was noted before,
the difference arises in the variance of the noise in the two cases. If
signal x is sent, the signal component of the output at t =T is
E[ (x,x,) - (x,y*)] where E is the energy of each signal, and if signal’y
is sent, the signal component is E[-(y,y,) + (y,x4,)]. The variance of the
noise sample is in both cases given by 2EN6[l-x*y*] = cg. By straightforward

substitution and change of variable, we find thé probability of error is given

by o
_ 1 -22
P = % f ¢ 2 a (2-56)
a
where a = oK y
o ‘l - (X*:y*)
and for symmetry we require (x,y,) = (&,x*).
Let
(%,%¢) - (%,7)
v = * ol (2-57)
vl - (x*,y*) m

We now show that if || x, || =[lye |l =11xll =lly |l =1, (xy) =0
||x-x* ||2 = ||y-y* ||2_= e2‘5 2 ;'Jé, and (x,y,) = (¥,x,), that

V/;{l - 5; }2 -l1<vyx<l1 (2-58)

We proceed now as before except that here (x,y)

n

0, and we set x = ¢l’ y = f

o, and (x,yy) = (v,%,) = B.

For simplicity of notation, let (x,x,) = (¥,¥,)
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Then
xe = O ¢ B4 ) & B (2-59)
A -
and o
Vo= BBty t ) b g (2-60)
. i=3

Note that the function x, and y, are completely arbitrary; we know

only that (x,x,) = (y,y,) = @ and (x;y,) = (v,x,) = B. We have
o
(x5¥y) = 208 + z a; b, (2-61)
. - i=3
and fram the Schwartz inequality,

o / e
Z 83 by | 2 (; o >1 2 C Z by >l/2 (2-62)

i=3
but Hx*H = Hy* H = 1, so that
z ai2 = Z bi2 =1 - [P+ 82 (2-63)
i=3 i=3
Then
(x0¥y) > 208 - {1 - [? + 8%)) (2-6k4)
= (o + 5)2 -1

and  (x,,y,) <1 - (@ - B)?

Substituting (2-64) into (2-57), we have

a-8

e R ALl e (&)

Jo - (a+ B)2

but 8(B) = 1, so that probability of error cannot be decreased by filter

mismatch.
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Recall now that in addition to requiring (x,x,) = (v,y,) = @ (for
symmetry) we require o > i to avoid having Pe >-%: Since rlx* || = Ily* || =1,
2
ae+62<l, and sincea>\/_;, || <a.
2
We seek the minimum of ¥(B) over all B (i.e. no constraints) by
differentiating y with respect to B, and find B such that %g - .=0. If
2 p=25
Q;% > 0, then B provides a minimum. We must now show that é is
4ap A

p=25 .
permissible, i.e. (a? + B2 <1l for a > L , and that the extreme values of

) S ] SN2 N
B; Bl =N1 - a?, 52 =N1 - Q? provide values of y that are greater than *(ﬁ).

We find that

s 1-0°
B = - (2-66)
¥(B) =~Nad® -1 (2-67)
2
EL% > 0 for o + Be <1l (2-68)
® lg-8
and indeed
FrpP= Fr o2sdfcn (2-69)
1 1
or 2a2+ <3 for a > = (2-70)
o? = - 2
also

¥(6) = ¥(By) = 1> Joo? - 1 forJ_:;-_ <a<l (2-T1)

so that é lies in the constraint set: Thus

V1= 2[1"6_2]2'15\(51 | (2-72)

2

the left hand side of (2-Tl) represents the worst nase degradation caused

by filter mismatch error. It is easy to show that
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Y>P (2'73)

and thus the orthogonal signal system is less sensitive to filter mismatch

error (for perfect signals) than to signal mismatch error (for perfect filters).

This is indicated in Figures (2-6), (2-7) and (2-8).

2.9 Summary of Matched Filter Approximation

We have shown here the effect of signal and filter mismatch error on the
performance (probability of error) of three matched filter receivers. For the
"on-off" and anti-podal cases, it was found that only the magnitude (not the
character) of the error influenced the performance. Moreover, for these two
cases, it mekes no difference whether the error is due to the fact that the
actual received signal is not the same as the intended signal, or whether the
filter is not quite matched to the received signal. The waveform of the
approximate signal or filter is of no consequence. The equal energy orthogonal
signal case is more interesting. Here the character or waveform of ﬁhe error
is important. Given only the magnitude of the mismatch error, one can only
give upper and lower bounds on the performance. In contmast to the other two
cases, where mismatch error always ceuses degradation in performance, a given
mismatch error may leave performence unchanged. Also the location of the error
(in the signal or in the filter) makes a considerable difference in the
performance of the system. The decrease in performance when the filters are
in error is less rapid than fér the same error in the gignal (comparing worst
cases). One would infer from these results that of the three systems, the
Orthogonal Signal System is potentially the most sensitive to mismatch error,
and is potentially loss sensitive to filter mismatch them to signal mismatch.
Signel mismatch error sometimes occurs due to waveform distortion caused
by the channel, and in general, orthogonal transmitted signals do not result
in orthogon;l received signals. Some aspects of this problem are considered

in the next chapter.
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Chapter 3

WAVEFORM CONSTRUCTION

3.1 Introduction:

When communication signals are transmitted through a channel, the wave-
form of the output signal will, in general, differ from the waveform of the
input signal. In particular, orthogonal input signals do not, in general,
produce orthogonal output signals. Moreover, we cannot usually write an
expression for the impulse response of the channel and determine analytically
the effect of the channel on the transmitted signals. In this chapter we
develop techniques that allow construction of a set of transmitted signals
from an arbitrary set of basis functions, so that the set of output signals
have a prescribed inner product matrix-f It is required only that the channel

be linear and that the inner products of the output signals can be measured

(by any convenient method such as time sampling.)

3.2 Waveform Construction

By "waveform construction" is meant here the formulation of a waveform
by a linear combination of other waveforms. That is,

N

£ = ) e g (3-1)

i=1

*
The inner product definition used for the output signals need not be

the same as that used for the input signals.
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where the g, are arbitrary real functions and the a; are real numbers. f(t)
is not being approximated by this linear combination; it is defined by it. )
The approximation problem is considered in the next chapter.

Here the waveform of f(t) i.e. "what f(t) looks like" is considered
to be of little importance, and the gi's ma& be selected on the basis of their
case of generation, etc.

It will be found to be convenient if in eq. (3-1), the g,'s are
orthonormal. How or where one finds a set of ortﬁonormal signals provides
a starting point for this discussion. One might pic¢k a set of functions
that is known to be orthogonal such as

(g (t) = sin P-%Tt] 0<t<T (3-2)

T

where as before, we define (gn, gm) = Jf gn(t) gn(t) dt. That is, if g(t)

0
is given as

g(t) = sin 1% t | (3-3)

and if one asks for some h(t) such that (h, g) = 0, a "natural” choice

would be another sine wave with frequency an integer multiple of“Ir . If

T
the given function is say
M
2 1 . nil . 1/2
g(t) = |,(1.3¢) | %/ ssn[z T osin T t] | 3t (t-T) | /
: n=1
(3-4)
Then the choice of an h(t) such that (h, g) = O becomes somewhat more
difficult. Here if h(t) = %t g(t), then (h, g) = O since for any integrable,
differentiable function f such that £(0) = £(T) = 0,
T 12T 1
f £(t) £(t) at = 3£} =3 [£(0) - £(T)] =0 (3-5)
0 . 0
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If the given function is not recognized as belonging to some known set of
orthogonal functions, or doesn't satisfy the consitions for some integration
trick such as the above, the most straightforward way of constructing h so
that (h, g) = 0 is the Gram-Schmidt orthonormalization process [8] which we
now explain. It was remarked above that eq. (3-1) would be more convenient
if the N fi's were orthonormal. The Gram-Schmidt process is a method of
forming N orthonormal functions from a set of N linear independent functions.

A set of functions {fl, f2, o fN] is said to be linearly independent if the

N
relation e, £.(t) = 0 for every t implies that ¢, = c,= ... = ¢, = O.
i’7i 1 2 N
i=1
Or in other words none of the K f.'s can be expressed as linear combination

i
of the (F-1) other i‘i's- The method is as follows: Given the linearly
independent functions f,, ... fy, a set of o;thonormal functions @ ,@, «++ @y
is constructed, beginning by setting P = “ 1 ”

£
1

t = - .
Consider now the function f2 f2 )‘l (pl Here )\1 can be so chosen that

. Clea.rlyH(plll = 1.

. s . - .
the function f2 is orthogonal to P Such is the case for )‘l (fz, cpl)

1 = - .
Consequently f, £, (f2, q)l) ¢, If now we set

2 (3-6)
Pp = T 3-
£, 1]
Then
e, Il =1
*2 ’ (3-7)
Next, form the function
f3' = f5 - (£, (Pl) P - (f3} CP2) Po (3—8)
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which is orthogonal to the functions P Poe Now set

i (3-9)
= Ty 3-9
CENTENT |
and
”fPB Il =1, (ij) CPl) = 0, (CPB) CP2) =0 (5-10)
In general if we put
fkl = fk - (fk’ (pl) P - (fk, (p2) Py - v - ‘fk, cPk-l) Pl
(3-11)
and
T L
k
% ~ ﬁ‘;’,"ﬁ‘ (3-12)
k

The set of functions P ocee By is orthonormal. An explicit expression

for the function P is given by

(3-13)
(fl,fl) (fe,fl) oo (£ ,fl)
o= 7 1 (£,£5) (£,£5) «oo  (£,5,)
k-1
(£155, ) (£ 08, 1)eee (BB ;)
£ £, £,
Fo=le—F(fl, ...fk) K=1,2, ... N (3-14)
where
(£,,£])  (£,,£)) (£,£;)
F = (1) (£0) -ov (f7T5) (3-15)




I Iy

and is called Grams determinant of the set of functions fl, cve ﬁk.

The relationship between the ¢'s and f's is seen to be of the form

$ =850
Pp =85 Ty +ay, 1,

C e e e e (3-16)
Py e Ty eyt togy By
or in matrix notation,

®

AF (3-17)

where

o= " (3-18)

(3-19)

and

F=| " (3-20)

It is seen then that given any integrable function on [0, T] there

are infinitely many functions that are orthogonal to fl

infinitely many functions which may be selected as f2 in the Gram-Schmidt

» as there are

process.
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Given a set of N functions, the labeling (calling one of the functions

fi, another f2, etc.) may be done in N! different ways since there are N

choices for fl’ N-1 choices for f2 having chosen fl

there are N! different ®'s that may be constructed from a set of N linearly

s etc. This means that

independent functions, although they span the same space.

3.3 Signals for M-ary Systems

If two known signals, X and X5, are received in the presence of

white gaussian noise, it is well known that the signal selection problem

reduces to choosing x. = X, in order to minimize probability of error. If

1
the receiver must decide which one of M possible signals was sent, it has

been conjectured [9], but only recently proved [10], that one should choose
a set of signals having the largest negative pairwise correlation (or inner-

product). For a set of N signals having unit norm ( or energy), the largest

negative pairwise correlation is given by

-1

p= -BT:]. * (3"21)

This is shown simply by noting that if fl, .. fN are signals having unit

norm and (fi’fj) = pi# j then

N N
( z £ z £, ) >0 (3-22)
i=1 i=1
N X
= Z (£5, £,) (3-23)
i3

N + (N2-N) p> 0

or p > f&l . (3-24)
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N
Equality holds here if and only if E: f& = 0. Note that equality here

implies that fl, cony fN are lineari?ldependent,
N
We now show that ZE: fi is the only linear combination of the fi that

i=1
. . . _ -1
vanishes if the f, have unit norm and p = (fi’fj) = o1 -

N N

= = 2 =
z A £,(t) =0 and p = - Then for any f,1 <k <N, (fk,z N £y) =0
i=1

since Z A, £. = 0. (3-25)

Suppose that

N N
= = =L
But (fk,z A £y) = Z A s f) = 0§ Z A (3-26)

N
N L+ g7 ] -5, Z Ay (3-27)

"

B %-1 “k-% Z A1 (5-28)

Since this is zero for all k, all the A'ks are equal, so that the only linear
N

combination of the fi to vanish is fi (or a scalor multiple thereof). In

i=1
other words, if N-1 signals fl’ ees Iy of unit norm are constructed having

a1 . -
(fi, fj) = §op » the only fy having the property that (fN, fi) = §o, 171, ..o,84

1s N-1

fy = - z £, (3-29)

i=1 N-1
That IIfN || = 1 is shown simply by writing IlfN []2 =|| j{: fi ||2 =
N-1 N-1 N-1 =1
2
Z e, [1°+ Z Z (255 1, (3-30)
i=1

i3

) _ _ 1
and using the fact that Ilfi Il =1 and (fi’ fj) - T N-1?
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we have || o |I2 = (N-1) 1 + ([ §-1 )% - [(N-1]) [ '1'}%'1 ] =1 (3-31)

The fact that the negative of the sum of N-1 signals of unit norm having

R . . _ o1
P = o, is the only signal £ having the property that (fN, fi) = §o W

be made use of in a construction procedure developed later in this chapter.

11

It has been correctly pointed out, [12], that equality in eq. (3-23)
can be achieved if and only the number of signals (N) is at least oﬁe gréater
than the dimensionality of the signal space. If Nbfi are considered to be
constructed from M orthonormel signals ¢, :

M
£ = z %13 1
i=1
. e ﬁ . e e
y = Z Ny Py
i=1
The dimensionality of the signal space is M (if no &y = 0 for every k).

A technique of constructing a set of signals having this minimum equal
correlation property (called Regular-simplex Codes) is described by Stutt [13].
Another method is presented at the end of this chapter. 1In [13], the signals
are considered to be vectors whose components are time samples of the continuous
waveforms. This is an unnecessary restriction, and his method applies equally
well to the more general formulation »f (eq. 3-24). If time samples are used
for the coordinates then the Py may be taken as non-overlapping pulses, producing
fi's which are staircase functions or the fi may be assumed to be bandlimited
functions and the g, are sinc functions (o = 533—5 ). In general; if the £,
are known to have the form of eq. 3-2k, & 4 is given by (fk, ¢5). For the

above two special cases, (fk, ¢&) is proportional to the time samples of the

f's.
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3.4 Linear Filtering of Constructed Signals

Unless a set of signals with a prescribed correlation or inner product
matrix is available to the signal designer, it is his task to build the
desired set. The construction of an orthogonal set of signals from a
linearly independent set has been illustrated previously with the Gram-
Schmidt Orfthnormalization Process. One construction procedure for generating
8 so called regular simplex code, as metioned before, has been given by Stutt;
we give another in this chapter. As was noted before, restriction to time
sampling is not necessary; and Stutt's construction procedure holds for the

more general formulation given earlier, where we write

N

= zan P;

: (3-32)
M

fM=Z &y 95
and the ¢i's are arbitrary orthonormal functions.

If these signals are to be used in the usual model of a communication
channel, where the transmitted and the received waveforms are the same, then
the choice of the @i's is immaterial. The performance of the system depends
only on the inner product matrix of the set of signals, and as is shown by
Balak [10], the probability of error is minimized if the set of signals is
a regular simplex code. For N fairly large (say 10 or more ), orthogonal
signals perform about as well and are apparently considerably easier to
generate.

In eq. (3-32) the P35 are also constructed signals unless they are

given as being orthonormal. In other words the ¢i's are constructed from a
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linearly independent set of functions gl, g2 coe gk. In matrix notation,

we write eq. (3-32) as

f=A0 (3-33)
Then writing

®=BG (3-34)

F=ABG (3-35)
where | A

F=lf, £, .. fM]T (3-36)

¢ = [(pl, P oo (pN]T (3-37)

G = [gl, gy - gk]T (3-38)

K>N

A is ean N x M matrix, and B is an N x N matrix. In eq. (3-32) N has
been called the dimensionality of the signals fi. A detailed discﬁssion of

dimensionality is taken up in the next chapter; it suffices here to note that

one must speak of the dimensionality of a set of functions, not the dimensionality

of a single function. A single function makes up a one point set and is
one dimensional, regardless of how it may be decomposed. That is, the fact

that a function f may be written as

Bl

t -2

£(t) = i £z ) inlt - %‘” (3-39)
1 20

does not make f and N dimensional signal. The dimensionality, (as defined

in Chapter V) of the set of f's in eq. (3-32), would be the smaller of M and N.

As was stated at the beginning of this section, no account is usually
taken of the distortion of the signal waveshape that may take place during
the passage from transmitter to receiver. Decomposition of a set of signals

as in eq. (3-32) may be done for purposes of construction, or for ease of
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finding the response of the channel to the constructed waveforms.
If two transmitted signals are designed to be orthonormal, the received
signals in general no longer have this property. Let the linear channel be
represented by its impulse response h(t). If P and @, are two orthonormal

transmitted signals, the received signals are given by
o, () = fT h(t-1) @ (1) dr (5-k0)
8,(t) = f h(t-1) g,(r) dr (3-11)
T

Then (el, 92) = dﬂ; el(t) ez(t) at

- [ [ [ ) n(s-e) () ay(e) ax a0
T T T
Following the notation of Chap. II,

(0, 8) = [ [ H(x,8) 9 (x) gy(p) av ap (3-42)
T T

Now if Py P are selected to be eigenfunctions corresponding to distinct A's

of the integral equation

x plt) = fT H(x,8) o(B) 4B (3-43)

fT { fT H(r,B) @ (7) d-r} %) ap

- [ mw B @ @ =0

since the eigenfunctions of eq. (3-43) are orthogonal. That is, a sufficient

we have

(3-44)

condition for a set of received signals to be orthogonal when their corresponding

transmitted signals are orthogonal, is that the transmitted signals satisfy
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eq. (3-&5). That it is not necessary is seen by considering the transmitted
signals to be.cpl =X, g, = x, with x(0) = x(T). Then (¢l, ¢2) = 0, and
since the channel is linear h[x] =y implies'h[i] =y, SO that if
y(0) = y(T) = 0, (y, ¥y) = 0. Another, less artificial, example appears

later in the chapter.

3.5 Construction of Transmitted Signals

Here the transmitted (input) signals are passed through a linear
channel h. If the input signals have a certain inner product matrix (e.g-
a regular simplex-code), the output (received) signals will not in general
have the same inner product matrix. It is of interest to determine the
relationship between these two matrices for a given channel. In particular,
we give method for constructing & set of input signals so that the set of
output signals has a prescribed inner product matrix. As a special case
of this method, a very simple procedure for constructing regular simplex
codes is presented.

Let the set of constructed input signals be given by

; (3-45)
M=Z i P

i=1
where the ¢i's are arbitrary orthonormal signals. Call ei the response of
the linear channel h to P57 and gi the response of h to f£f,. The set of

i
output signals is then given by
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N
g ZE: 8 &
i=1
N
8y ~ }: oy 8
i=1
Let
bij = (o,, ej)
N N
By = (& o8y = }Z }: i 245 Pij
i=1 i=1

€&
T %*
We introduce the notation < GG >=G = <

The inner product matrix of the q's may be written as

<66 >= G, = [(g,, 8,)] = AB,A"

where
all cees am
A= |.
. B
is the generator matrix for the f's (F = A®) and
_ -
(eo,, el) ...... (el, eN)
By =

is the inner product matrix of the 6's.

(3-16)

(3-47)

(3-48)

= (3-49)

(3-50)

(3-51)

(3-52)
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The inner product matrix of the set of input signals is given by

F, = AA (3-53)

and the condition for G, = KF,, i.e., the inner product matrix of the
output signals is proportional to the inner product matrix of the input

signals is that

AB,AT = kaa® = F, - (3-54)
orAB* = KI (3-55)

where I ié the identity matrix, and K is an arbitrary constant. If the
channel is anything but an attenuator, then the two matirces are not the
same, and it is of interest to determine a method for constructing the input
signals so that the output signals have a prescribed inner product matrix.

We make use of the fact (theorem 1, p.126 [32]) that a non-singular
symmetric matrig may be uniquely deocmposed into the product of a lower
triangular maetrix and its transpose. That is, if X is an (NXN) symmetric
matrix, it may be written as

T

X =TT (3-56)
where _ —
tll 0 0
t t .0 . .
T = 4:21 22 . (3'57)
tNl tN2 . . 'tNN

and T is unique. We require here that A be square and non-singular.

Let

T T

G, = 0 and B, = BB (3-58)
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where @ and B are lower triangular matrices. Then Eq. (3-50) becomes

oo = Agp"A” (3-59)
or ool = (a)(a8)T (3-60)

We now identify @ and AB. That is, we set

a= AB (3-61)
or A= aﬁ-l (3-62)
Equation (3-62) assumes a particlarly simple form if the @'s are selected

according to Eq. (3-43). As was noted previously, the 8's are then orthogonal,

with
) = -
and the inner product matrix of the 8's is given by
)‘1 0
B, = )‘2 (5—6’4-)
* .
0] }‘N
Then _ _-
iy
2, 0
B = - (3-65)
iy
The inverse of B is given by
[ 1 i
Vi, .
-1 —
B = | Jlg 0 (3-66)
.1
0 —_—
-y
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A procedure for finding the triangular decomposition of a symmetric
matrix is given on page 127 of [32]. The elements of the lower triangular

matrix is calculated as follows: If the symmetric matriva has elements

85y = gki’ the elements a&k (O:ik = 0 for k > i) of the lower triangular matrix
are computed in the following fashion.
First column: all = AJéll
%l = il-
%
nd 2
27 column : Q,, = Jkgez - Oy )
%o = (Bp = B Aq) /9
(3-67)
rd 2 2
1 : = Jr - -
3 column i Qyg =NEgy - Uy - Ggp
Gz = (Bg - %y Gy = Op Fep)/%;
th . _ 2 2 2
4L*7 column : %), -.Jéhh -0 - %y - Oys
% = (B = %y % - By Gp - Bz Ges)/O,
ete.
3.6 A Construction Procedure for Regular Simplex Codes
Here it is desired to construct a set of N functions [fi, . fN]
so that 1 i=j
_J-1 R .
(e £) {fh 143 (5-68)
If the f's are generated by a set of orthonormal functions,
F= A0 (3-69)

NS OB NG I 0 N N N N I R 0 N n ey S s i e
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Then as before, the inner product matrix of the f's is given by

FF' = By = (g, )] = aA" (3-70)

Here we simply identify A with the lower left triangular matrix of the
triangular decomposition of [(fi’ fj)] according to the procedure in Eq. (3-67).
However, in this case, the matrix F* is singular since its determinant

must vanish as the f's are linearly dependent. To avoid any possible

formal difficulty in dealing with a singular matrix, and also to simplify
the construction procedure we use the non-singular [N-1] by [N-1] matrix
whose off-diagonal elements are equal to i%l' This matrix is then factored
into A’ AT where A’ is a [N-1] by [N-1] lower triangular matrix. The
generator matrix A for which AAT yields the desired regular simplex code

is found by adjoining to A’ a row whose elements are equal to the negative

of the sum of the elements in the respective columns. That this is correct

is assured by the fact noted earlier that if fl’ . fN-l have unit norm and
= 1 - 1
(fi, fj) = §o,’ the only function fy having the property that (fN, fi) = 1
is
N-1
fN= - Z fi'
i=1

The above factorization procedure is of course not the only one that can

be used, but it leads to perhaps the simplest computational procedure. This
is especially true when the transmitted signals pass through a channel which
changes their waveshape-.

We now give some illustrative examples of the foregoing material. The
above techniques do not require knowledge of the impulse response (or some
equivalent characterization) of the channel. We only require that the channel's
responsevto the set of input signals can be measured. In the first example,

the channel is taken to be an RC lowpass circuit to permit analytic computation.
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Example 4-1: Construction of input signal set to produce an orthonormal
set of output signals:
Specifically in this example, we construct two input signals, fl and f2,
so that the output signals, 8, and g, are orthonormal. Here the channel is

taken to be an RC circuit with transfer function H(s) = s%h + The waveform

of the ¢'s is arbitrary, but we take

Vo ¢t
n ) (3-71)

-t

5 203¢72% - 27t

for computational convenience. Then Gl and 92 (the channel's response to

® and P respectively, are given by

0 - usé'e [t - -t
(3-72)
L -t -2t bt
92 = -5- ["h'e + 9€ - 5e ]
Here the inner product, x and y, (x,y) is taken to be
Gev) = [ x(e) () at (3-75)
0
We then find that
—
4 _2v2 |
5 15
By = (8, 8,) = (3-74)
- 242 2
1
| P >




and

v &
o

B = (3-75)

..Jio 2
| 715 3 i

il

Since we want (gi, gj) = 5ij'

1 0O
G* = [o 1 ] (3"76)

and
1 0]
Q= (3-77)
0 1
so that
A=opt=p1 (3-78)
and

gt - = A (3-79)

1 /10 3 /5
R

The operation is indicated schematically and pictorially in Figures

(3-1) and (3-2).

Example 3-2. Construction of input signal set to produce a set of input
signals which is a regular simplex code.

We take the same channel, and the same set of ¢'s as in Example (3-1),
and construct three input signals so that the three output signals have the

inner product matrix.
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al V5
v 5
1vJ10
L 77 N
-
P2 345 ¥
v 2 7
Fig. 3-1

Block Diagram of the Transmitter in Example

Fig. 3-2

Picorial Diagram of the Relations Between
the Signals in Examples (3-1)
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- 1 1 -
1 -3 -3
6 lepend-2 1 -l (560
1 1
T2 T2 1

We make use of a previous result (eq. 3-28), that if a set of N-1 normal

functions has the property

1

(fil fj) = T ¥-1 i f jgi, j=1,; - N-1, (3-81)
the function fN having the property that
o F-J l 4 ()
(LN} Li) = - N -1 (J—Sc.)
N-1
is given by fN = - }; fi' We then construct two input signals, fl and f
i=1

so that their corresponding output signals, 8, and 8y have the property

(gl, g2) = - %- By the above, -(gl + ge), and since the channel is

85 =
linear, f3 = -(fl + f2). We consider then

= 1

-3
Gy = (3-83)
1
[z
for which _ -
1 0
a’ = (3-84)
1 3
3 Vi
then A’ = a’ p™t _ _
1 0 Js5
2

(3-85)

1
IV
=
i
|5
[V
3N o

2)



Block Diagram of the Transmitter in Example (3-3)

_58.
et 1.118 . f
. 5 .
0.347 -
+
® — £
¢ +
2 1.098
Fig. 3-3

Fig. 3-4

Pictorial Diagram of the Relations between the
Signals in Example (3-2)




1.118 0 '1

(3-86)
0.347 1.098

A is found by adjoining to A’ a third row whose elements are given

by the negative of the sum of elements of the respective columns. That is

1.118 0]
A= | 0.347 1.098 (3-8T7)
-1.465 -1.098 '

The operation is indicated schematically and pictorially in Figures (3-3)
and (3-4).

Example 3-3

In the procedure given for construction a set of input signals so that
the resulting output signals have a prescribed inner product matrix, it is
not necessary that the inner product used for the input signals be the
same es that for the output signals. That is, we may use for the ¢'s and

f's the inner product

T
(x,¥), = J[\ lx(t) y(t) at (5-88)
0
and for the 8's and g's the inner product
T2
(x,¥)5 = Jf x(t) y(t) at . (3-89)
0

As an example we take ® and'¢b to be as shown in Fig. » and the
channel to be an RC circuit with impulse response h(t) = e-t- For the input
signals, we, take

1
Gox)y = [ xe) () at (3-90)

0



and for the output signals,

(x,¥), = J[; x(t) y(t) at (3-91)

the functions el and 6, are shown in Fig. (3-53). The inner product matrix of

2

the 8's using ( )2 is found to be
0.36788 0
B = (3-92)
0 0.28382

Here the 8's turn out to be orthogonal, so that P and B_l are diagonal.

1.6487 0
B = (3-93)
o) 1.8771
l.6h87 0
gt - (3-94)
0] 1.8771

If we desire (gi, gj) = 513, then as before

A=B (3-95)

Since the 8's are orthogonal, this operation amounts to amplitude scaling of
the input signals so that the output signals are normal.
If we require the output signals to be orthonormal on 0 <t <1, we
compute B = [Qi, Oj)l]:
0.1681 0.0489

B = (3-96)
0.0489 0.04625

S W e e
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and
2.439 0

A=B" = (3-97)
A-1.623 5.589 ~ :

The input signals fl and fé are shown in Fig. 3-5.

The technique given above for finding a generator matrix A yields a
triangular matrix. Once this triangular matrix is found, many different
decomposition may, of course, be found by multiplying A by an orthogonal
matrix.

Earlier in this chapter it was mentiocned that one may checose to construct
a set of input signals from another set because of the ease of physically
generating the basic signals. One can, of course, only obtain signals that
are linear combinations of the basic signals. For example, the signals which
produces maximum energy transfer (as in Chapter III) may not lie in this class.
We may look for an optimum signal in the class of signals generated by the

baisic functions P ot Py i.e.

N
£ = Z a8 @ - (3-98)
i=1
In matrix notation we write

£ =Ad (3-99)

where A = [al 8y oe- aN] and

hal
o= . (3-100)

PN
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Pl

Fig. 3-5

Input and Output Waveforms of the
Signals in Example (3-2)

=
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We wish to maximize
T2 . T2 N 2
f g2(t) at = f < Z a, o, (t) >dt (3-101)
0] 0 i=1 ] '
N N
= E: E: a, aJ 91, 92)2
i=1 i=1
subject to the constraint that
T N
f 2(t) at = Z aig =1 (3-102)
0 i=1
or in matrix notation, we seek
T T

1 = max A"BA with AA” =1 (3-103)

which is given by the largest eigenvalue of B , and A is the eigenvector
corresponding to the largest eigenvalue.
For comparison, we take the ¢'s and the channel in example 3-3, and

compare the 1 in eq. (3-103) with the best possible ratio found in Chapter III.

Example 3-4 1
Here we take (x,y)l = (x,y)2 = ~'/\ x(t) u(t) dt. We find
. o _
.168 .048

B = [(ei, ej)]
.048 .0k6

and its largest eigenvalue, A, = 0.185 with corresponding eigenvector,

1
A = [.943, .332). In Chapter III we found for this case that the maximum
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ratio of output energy to input energy was about 0.195, so that the input

signal shown in Fig. 3-6 is about 95% as good as the optimum signal.

1.275

.668

t 1 1
2
Input Signal
Fig. 3- 6

Summery :

In this chapter, methods were developed for constructing input
signals from a set of arbitrary waveforms so that after passing through
an arbitrary lirear channel, the resulting output signals have a prescribed
inner product matrix. The innner products used for the input and output
signals may be different.

It should be noted that for the computation of (Si, ej) = J[‘ ei(t)ej(t)dt
it is not necessery to literally implement the integral of the prgduct of
ei and ej. Time sempling of the output signals is the more common procedure
and is used to facilitate use in systems employing digital computers. This

sampling technique is, of course, an approximetion. Some approximation

problems are considered in the next chapter.
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Chapter Ly

WAVEFORM APPROXIMATION

k.1 INTRODUCTION

In the previous chapter we dealt with waveforms which were constructed
by forming a linear combination of other waveforms. There was no approximation
involved in the methods developed there except the inherent approximations of
potentiometer settings, amplifier gains, etc., which are inherent in any
physical implementation. In this chapter we study some aspects of the problem
of approximating an unknown signal by a finite sum of known signals. In
several adaptive communication systems, (e.g. Glazer [15], Janowitz and White
[16]), the form of the received signal is estimated by finding its projection
onto a known set of signals. The measurement of these coordinates (projections)
is invariably corrupted by noise, but by making a sufficient number of
observations, the effect of the noise may be made arbitrarilyismall. A factor
to be considered in such a scheme is the number of coordinates necessary to
obtain a sufficiently good estimate of the received signal, as in general the
smaller the number of required coordinates, the easier it is to obtain good
estimates. It is of interest then to study the problem of efficient signal
representation (approximation) and its implications in overall communications
system design. Even when the received waveforms are known, it is usually
more convenient to operate on some ordered N-tuple representation of the
signals. That is, the receiver performs discrete operations on a set of
numbers representing the analog signal. For example, the numbers mey be the
time samples of the received waveforms. If the received signal is x, and its

N-tuple representation is X = [xl, Xpy ooy xN], two receivers might be built;
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one operating on the analog signal x, and the other a discrete receiver
operating on ;. For the two receivers to be equivalent, the decisions
announced by each receiver must be the same. If by knowing §, x (the analog
signal) may be reconstructed, the discrete receiver (operating on Q) will
necessarily make the decision as the analog receiver (operating on x). This
however is not usually the case, and the discrete receiver is an approximation
to the anslog receiver. Although the discrete receiver may be optimum (say

in the Bayes sense) for §, it is not, in general, optimum for the analog
signal x unless x is completely characterized by ;. For a given N, the

choice of coordinates X ees X then, determines the analog waveforms

for which the discrete receiver is optimum. If the received signal is not
completely characterizedf by Q, one must assume that the representation is
"eclose enough" so that the decisions made by the discrete receiver agree

well with the decisions which would have been made by the optimum analog
receiver. For a given N, and a given set of transmitted signals, performance
of the discrete receiver may be enhanced by proper selection of the coordinates
so that the representation is as close as possible.

In this chapter we attempt to make clear the implications and difficulties
associated with the problem of finding "optimum" finite dimensional representations
for given classes of signals. Although the intuitive idea of approximating
"sufficiently well" any member of a given class of functions by a finite

linear combination of other functions seems reasonable enough, actually

*
By "completely characterized" is meant that for two analog signals x(t), y(t)
and their discrete repreigntatlons X = iy xg ’ y = [Y 3 ==y YN], the .
quantltlesh7$x2(t)dt,Jf (t)dt,L/'x(t)y(%)dt must be equal lto their
T

discrete counterparts }: 5 E: Yi ’ }:

I+l
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finding these "other functions" or even the largest error incurred by the
approximation where the problem is precisely stated seems to be beyond our
reach. In this chapter, we develop bounds on the largest error incurred by
approximating a finite set of signals by any lower dimensional subspace,
thus allowing a quantitative comparison of the efficiency with which
different sets of signals (chosen e.g. for their simplicity) approximates
the original finite set of signals. Of particular importanée here is the
development of error expressions. Due to the difficulty of actually finding
best finite sets of approximating functions, of particular importance in this
chapter is the development of remarkably simple error expressions for ex-
ponential function approximation. Here exact expressions are develcped for
the smallest error incurred by approximating a function composed of a finite
(or infinite) number of exponential functions by an element of the subspace
spanned by a finite number of other exponentials. The form of these
expressions is such that rapid trial and error calculations may be made to
obtain approximate values of the best exponents of the set of exponential
approximants. Finally, we examine the significance of the number of signal
coordinates used in conditional meximum likelihood estimation of signal

waveforms.

4.2 Models and Approximation

In engineering problems we almost invariably work with mathematical models

of physical systems rather than the actual systems. Hence we deal with an

approximation problem. We would like our model to approximate the actual system

in the sense that the predicted performance (based on analysis of the model)
agrees well, in some engineering sense, with the actual performance. It is a

rare case when one can give a quantitative measure of the goodness of the
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approximation, since on one hand we have & mathematical model, and on the other
a physical system. We do not usually know all the parameters of the physical
system, much less the exact effect of changes in these parameters on the system
performance, so that a precise mathematical measure of the goodness of the
approximation is impossible. If our assumptions of gaussian statistics,
linearity, band-limited signals, etc., allow us to make "reasonably accurate"
predictions of the performance of the actual system, then they are justified;
not because the noise does have gaussian statistics, the channel is linear, the

signals are band-limited, etc., but rather that the end result is satisfactory.

4.3 Mathematical Approximation Theory

The ares of mathematics knoﬁn as Approximation Theory as presented for
example in the books by Achieser [8], Jackson [1T], Korovkin [18] and Golomb
[19] is & relatively new area; most of the work having been déne since the
turn of the century. It is currently a very active (and difficult) area of
mathematical research. Only a very small portion ofvthe problems énd results
from this area that are pertinent to the signal approximation problem will
be discussed here. To avoid cluttering up the discussion, some of the
definitions and theorems used here are collected in the appendix and are
referred to by [AK] meaning the kth section of the appendix.

The main problem in the theory of approximation according to Achieser can
be stated as follows: "Let us suppose that two functions f(P) and
F(P; Al ‘e An) of the point P € B are defined within a poiht'set P in a space
of any number of dimensions. Here F(P; A1 ced An) depends on a certain number
of the parameters Al- It is required to so determine the parameters that the
deviation (or distance) of the function F(P; A - An) from the function f£(P)

for all P in P shall be a minimm." This problem is quite broad and includes
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those problems for which F is a nonlinear function of the parameters Ai’ and any
metric [Al] may be used as the measurement of the distance D[f,F] between f and F.
Among the metric spaces, the so-called normed linear spaces [A2] are important

in approximﬁfion theory. If x is an element of a normed linear space, its
distance from the origin is called the norm of x and is denoted by le [|]. A
normed linear space is a metric space if we put D[x,y] = le-y ll. For example,
the collection of all continuous functions x on 0 <t < T is a normed linear
space if we take || x l‘c = max | x(t) | . Also any IP space [A3] (p >1) is a
normed linear space in which the elements are functions x(t) ona <t <b

with the norm defined by

=11 =[j;b|x<t>lpat]l’

The Fundamental Theorem of Approximation Theory in Normed Linear Spaces

I+

can be stated as follows (Achieser [8]): Let E be a normed linear space, and
let g7 <+ 8y be n linearly independent elements of E. Then given x ¢ E

there exists numbers Al, cesy An for which the quantity
[ - Mo B = Ay By - oeee m A gnll

attains its smallest value.

Note that the norm is not "tied down" to any particular distance measuring
function. If the norm is llx IIC, this is the so-called Tschebycheff problem.
In any approximation problem there arises two questions. First, does there
exist a best approximant?" Second, "is it unique?" For the Tschebycheff
problem, the above theorem says that a best approximant exists. However, the
best approximant is in general not unique (see [A4]). This fact, coupled with
the computational difficulty of actually finding the A, makes || || an

unattractive distance measuring function for the Signal Approximation Problem.
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If in a linear space we can assign a number (x,y) for every pair of
elements x,y called the inner product of x and y EAS]Hand if we take
le || = (x,x)2, we have what is known as a norme& linear inner product
space. This is what Achieser calls a Hilbert Space, although some authors
reserve the name Hilbert Space for a complete [A6] normed linear inner
product space. .

If the approximation is in a Hilbert Space, we have the following
fundemental approximation theorem [8].

Let G be a subspace of the Hilbert space H and suppose that x ¢ H does
not belong to G. If there exists in G a y whose distance from x is the

shortest, then the vector x-y is orthogonal to any vector of G, i.e.

(x-y, 8) =0 (g€ G)

By using the results of this theorem, the function

YA gt Mgy

which deviates least from a given x can be presented explicitly for the case

where G is generated by the linearly independent functions COPRRER g, In this

case [8]
2 G(x,gl, ey En)
min”x-)\ g “...—)\ (4 II =
1 =1 n-n G( )
ki gl} ey gn
where
(gpg) + + - - o v (g08))
ooy, - g,) = :
(858,) - - - - - - - (g 8)
and G(gl, .. gn) is called Gram's determinant of the functions g, «-- &-

The norm is "tied down" only by the fact that it is derived from an inner

product, and that

2 2 2 2
ey [1Z+ Hxy [T =2][= [+ 2]y ]]"
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(This identity actually characterizes the inner product spaces among the
nérmed linear spaces). In signal approximation, the approximation is almost
invariably in this sense. Moreover the "distance" is usually measured in the
sense of the L? norm, le ||2 = \/\ xa(t) dt. This is partly because the L2
norm has the physically meaningfulTinterpretation of energy, and partly due to
the "goodness" of this error criterion. In 196, E.A. Guillemin's correspondence
note [20] on "what is nature's error criterion" provoked some heated corres-
pondence. Making small the integral of the square of the difference between
two signals is not necessarily the same as saying that the two signals "look
alike" or "sound alike", although the converse comes closer to being true.
For detection problems, the "energy" of the received waveform is the important
quantity, and hence the integral-squared (or L2 norm) error is a reasonable
criterion. In other applications, such as visusl recognition, a more meaningful
criterion is the minimization of the maximum difference between the two signals,
i.e. attempt to make the signals look alike. If the signals are sufficiently
smooth, an error criterion taking the smoothness into account may be used by
taking the inner product to be (x,y)T = (x,y) + (X,5) + --- + (é;)sxr)) if
the signals have r continuous derivatives. This type of approximation may be
regdily handled using the Fundemental Approximation Theorem in Hilbert Space,
although the physical interpretation of the error is not as clear.

The usual approximation problem, as outlined above, is to choose a linearly
independent set of functions 8ys *** By and find the coefficients Al, oue An
so that for a given signal x, the error ||x-xl, B = - hn 8, || is minimized.

If the signal to be approximated comes from a known class of signals x, the

"goodness" of the set of approximants g1 +ve By might be measured by
My = Dex min ||x-kl, gy= - —An g, [
Xex A
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Different sets of N approximating functions may be compared by the value of
Ty achieved. To carry the problem further, the smallest possible Ny may be
sought over ali N-dimensional subspaces. This last statement does not really
make sense unless one specifies the class of functions from which the N
approximating functions may be taken. As reasonable as it may seem , the best
(in the above sense) approximating functions gl, sy gy are not necessarily
elements of the set of functions to be approximated.

In contrast to the abundance of results on approximation with a given
set of approximation functiong, the problem of finding the best set of appro-
ximating functions has hardly been touched. The existence and uniqueness of a

best set of functions g o for approximeting functions of a given class

En
has not yet been studied [19]. However in special cases, the smallest value
of y in Eq. (A) has been calculated (see [19] p. 262).

We present this discussion so that the engineering Signal Approximation
Problem may be placed in proper perspective. Almost invariably, engineering
approximation is in the sense of linear approximation in Hilbert space as
outlined above. Moreover, the norm used is that of L2. In this sense, we
could, in most ceses, discard the words and symbols of function spaces and
return to the less sophisticated sounding "integral-squared error" criterion
without losing & thing. However, the notations of llx II, (x,y), etc., are

attractive if for nothing more than ease of writing. Actually, results

obtained using J[ [x(t) - y(t)]2 dt as the criterion of error disquised as
T

le-y ||2, mey hold for any inner product space, and the more general formulation

may be justified.

4.4 Finite Dimensional Signal Representation

The basic idea of finite dimensional signal representation is to attempt
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to characterize a signal x by an ordered N-tuple [al, aa, cee aN]. That is,
knowing the numbers ai is equivalent to knowing x; and vice versa. Uhless
the space X from which x is taken is N dimensional, this one-to-one
correspondance cannot be obtained. A space of functions, X, is said to be
N-dimensional if every x € X may be written as

N

xt) = ) c, 1) (4-1)
i1 :
and N is the smallest integer for which this is true. The space X is said
to be generated by the N linearly independent functions fl, f oo £.. In
general, the set of signals we wish to characterize in a particular

communication system is not finite dimensional (or it may be finite dimensional,

but we do not know what the f,'s are in Eq. (4-1). For a given linearly

i
independent set of function gl, ‘o gN, we may approximate a signal x by
N
a®x ) 4 e (4-2)
i=1

The approximation error (or the distance between x and xN) may be measured
by any metric, but since we know that at the least, the signals have finite
energy, we usually measure the approximation error in the sense of the L2 norm,

|] x ||2 = \/; xz(t) dt, and assign an inner product (x,y) : ~/; x(t) y(t) at

to any two functions x and y. This leads to probably the simplest formulation
of the approximation problem. If in (4-2) the gi's are orthonormalized

yielding P2 Po o Py the minimization of

e = || xxg || 2 (4-3)
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is achieved by teking a; = (x,qﬁ), where

N
(®) = ) ey 0y (6) - (b-1)

This is the classic approximation problem in Hilbert Space as presented

in the previous discussion. If in addition, we ask for the ¢N = {¢1, oo ¢N}

which further minimizes Eq. (4-3), we are asking more than the mathematical

approximation theory tells ué. In the following, we attempt to make more
precise what is meant by choosing the "best" QN’ or actually the best

N-dimensional subspace.

k.5 Optimum Basis Functions for a Given Set of Signals

First of all, it is important to realize that dimensionality must refer
to a set of functions, not of a single function. A single function forms a
one point set, and is necessarily one dimensional, regardless of the way it
may be decomposed. If the g, 's in Eq. (4-4) are complete in L2, and the
x's are square integrable, then by teking N sufficiently large, the error
defined by Eq. (4-3) may be made arbitrarily small. For finite N the error
will not be zero. If a certain amount of error can be tolerated (e.g.
if IIx-xN ||2 < €o2 the system can't distinguish between x and xN) we may

speak of a set of functions being "approximately N-dimensional".

Definition 1. A set of functions X is said to be N-dimensional with respect

to a tolerable error e02 and s given set of orthonormal function oN = {¢l, .. ¢N]

(we write this statement as N[eo,¢N ]) if

2
”X—XNH 2

—_—— <e¢ (4-5)
P) > ’
[1x1] °

xeX
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and if N is replaced by N-1, there exists X € X such that

2
Ixx 112 -

- > €
1%, 112 °

While this definition is (perhaps) mathematically satisfying, we would
find it difficult to apply in practice since we can usually observe only
a finite number of the elements of X (the set of possible signals). The
complexity of the problems leaps several orders of magnitude when we attempt
to find a best @, and the dimensionality of a set of functions with respect
to only the tolerable error. Note that we are not concerned with an "average"
error. This can be done, of course, by assigning some probability distribution
to the set X, and seeking the QN'which minimizes the expected value of the
integral squared error. In this case the p; are the eigenfunctions of the

integral equation

Ap(t) = j; R(t,1) o(7) dr.

This is a corollary to the Karhunen-Loeve expansion that is usually attributed
to Brown [21] in 1960, but in fact was apparently derived first by Koschmann
[22] in 1954. A difficulty with such a criterion is that the repreéentation
depends upon the probability law. Also this criterion may permit large

errors while minimizing the average error. Another detraction from such a
random criterion is that all sets (or ensembles) having the same R(t,7) yield
the same representation function without regard to the actual timc’wavéforms-
For example, the random telegraph signal (a random square wave assumingvales
of -1 or 1 with equal probability, and the probability that K amplitude changes
occur in a time interval of length T is given by the Poisson distribution),

and the output of a law pass RC circuit due to white noise, both would haQe
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the same representation functions even though their time waveforms are
are completely different. As is often the case in communication theory,
the assignment of a probability law allows us to solve a problem, but is not

necessarily the problem we started out with.

Definition 2. A set of functions X is said to be N-dimensional with respect

to a tolerable error 602 (written as N [60]) if

. N
N[eo] = min N { eo,Q ] (4-7)
¢N :

L]
That is, we seek the smallest number N, and the associated ¢N (or ®N s)
for which equation (4-5) and (4-6) are satisfied. The functions ¢l(since they
are orthonormal) are constrained only to lie in L2. The complexity of this

problem should be apparent. The search for the best ON is equivalent to fixing

N and seeking those functions P which achieve

N
. 2
min max || x - E: (xl ¢i) ¢i|| . (4-8)

¢N xeX i=1

There are no theorems in approximation theory on which we can draw in
order to aid in the solution of this problem, and yet it is just this kind of
problem that is implied when one intuitively speaks of a set of functions
being "approximately N-dimensional".

It is the more remarkable then, that Slepian, Landau, and Pollack ([23])
(24] have succeeded in obtaining results on the "best" ¢N for a particular
class of functions, and lend preciseness to the intuitive notion that a signal
may be characterized by approximately 2WT numbers if the bandwidth of the

signal is "about" W, and its time duration is "about" T. This notion is based
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on the well known "sampling theorem" which states that a strictly bandlimited
signal f. of bandwidth W may be characterized by its time samples spaced

1/2W seconds apart, and the representation takes the form

£= % z £ @) s 2 [v- a0 (4-9)
- 2 It - Zl

This has led a number of misuses of this theorem. One such misuse is the
notion "That if £(t) is small outside 7% <t < g , then of course one only
need take 2WT samples". Another notion is that "if f is bandlimited to W,
and time limited to T, the f may be characterized (uniquely in fact) by
2WT samples”". Actually this latter notion is true (vacuously) since the
class of functions which are strictly bandlimited, and strictly time-limited
is an empty set.

The class of functions considered by Pollack and Tondau [24], is the class
of strictly bandlimited functions of bandwidth W, whose energy outside

”T/z <t < T/2 is equal to ¢ 2 _(aenoted by E(ep). They show that for this

T
class of function, the function P2 P - Py which achieve

o

- 2
min  max nin f | 2(6) N5t ey, (6) ]2 at
(o]

N

o fefleg) o (4-10)

are the angular prolate spheriowﬂ.fvnctionﬁcy - vn-l' In regard to the
difference in approximating with the sampling function rather than prolate
spheriodal functions, they show that if f e E(eT), then

[2WT] + N
-]
2 2
inf fl f(t)-ZancpnI at < C g
a, -® o]
1

is
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(a) true for all such f with N = 0, C =12, if the ¢, ere the prolate
spheriodal wave functions
(b) false for some such f for any finite constants N and C if the R
are sampling functions.
As important as thése results certainly are, we should not misconstrue them
to say that the prolate spheriodal wave functions are the best representation
functions for signal approximation problems. This would be true if our
signals satisfied the conditions of the above theorems. For some other class
of functions the prolate spheriodal wave function may provide a very poor
approximation, compared with the same number of other orthogonal signals.
The work done by W. H. Huggins, et. al. [25], [26], [27], [28], has been
primarily concerned with the use of orthonormalized exponential functions.
In many ways the exponential functions are as interesting a class of signals
as the prolate spheriodal function or sampling function. The Gram-Shmidt

orthonormalization process has a particularly simple form as shown by Katz [29].

-a, t
An infinite set of exponential {f *

}-may be complete in L2, (Schaz's Theorem)
see [25] p __ . No small point in their favor is that the ease of generation
of these signals (see [26]) is considerably greater than that of say the

prolate spheriodal wave functions. Huggins and Young demonstrate in [27T]

that exponential function do a remarkably good job of approximating electro-
cardiograms. Certainly we would expect a class of electrocardiograms to

have more structure to it than just that they have some "essential"” time

duration and "essential" bandwidth. In this connection, we note that even
though exponential functions are "good" for approximating electrocardiograms

the tag of "best signals” is still mathematically indefensible. A major

difficulty in the search for a "best" set of basis functions for a physical

ensemble of signals is in describing the ensemble. In practice one can observe
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only a finite number of the members of the ensemble. The question of how
well and in what sense a set of functions can be described or characterized
by a finite number of its elements can possibly be answered for a well
defined set of functions. For physical ensembles of signals, however, one
can only assume that if enough sample signals are observed, that they contain
the "essential” characteristics of the ensemble. Whether the characterization

is good or bad, it is all that one can do.

4.6 Best Representation Functions for a Finite set of Signals

A set of M signals {fl, fz, S fM} is at most M dimensional. If the fi’s
are linearly independent, Gram's determinant is greater than zero, hence the
rank of the inner product matrix [(fi, fj)] is M. If each fi is generated by
K linearly independent functions, the dimensionality of the set of fi's is
<K <M. It is well known [30] that the relative size of a Grams determinant
is an indication of the "closeness” or "near dependance™ of the fi's- In
Courant and Hilbert [30], the "measure of independence is taken to be the

size of the smallest eigenvalue of the of the quadratic form

M M
K (t,t) = J; (b, + ---- thM)2 = Z Z (fi, fj) bty
i J
(4-11)
If the eigenvalues of eq. (4-11) are such that N of the M eigenvalues
are "significantly larger” than the other M - N eigenvalues, it is sometimes
said that the set of functions fi, - fm is "essentially N dimensional”.
In order for this statement to have meaning, the meaning of term “essentially"
must be made more precise. The "dimensionality”™ of a finite set of functions
needs to be examined in the light of our previous definitions of N [eo, o]
and N [eo]. Recall that for the "best" approximating functions, we seek those

which provide
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Rearranging the terms in (4-14), we seek

=) [

¢N k=1 i

M
fi(t) fi('r) cpk(t) (pk('l’) atdr  (4-15)
=1

2
2, 1]

Note that each term in the sum on K is of the forms

f f K (t,7) o(t) o(t) dttr. (4-16)
T T

The maximum of (L4-16) is well known [3] and is given by the largest eigenvalue

of the integral equation

w(t) = [ K(e,7) gx) ar. (4-17)
T

Call this largest eigenvalue hl, and its corresponding eigenfunction, P,
The next ¢, @,, is chosen to maximize (4-16) with the additional constraint
that (¢2, wi) = 0. This maximum is given by the next largest eigenvalue

of (4-17). Continuing in this manner, we find that

M N
min }: €i2 =M - }: Kk (4-18)
QN i=1 k=1
M
Since K(t,t) = zz f&(t) fi(T), the A are found as the eigenvalues of the
i=1
symmetric matrix
(£, £.)
G = [——l——i— ] (4-19)
ENIRIEN]

This is the inner product matrix of the normalized fi's. The eigenvectors

of (4-19) are orthogonal and may be normalized.
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N
2
min max min l{fi - }j & ?k!!
o £, 2 k=1 - . (4-12)
s, 11
i=1, ---

We begin by seeking the ¢N which provide

M M N
X 2 R 2
min j{: €;” = min }Z [ £, - ZZ: a, ?kll
°N i=1 QN i=1 k=1 (14-- 13 )

2
e, 1]

It seems more reasonable to consider the normalized error in eq. (4-13),

as llf - E: & B ll2 may be quite small while the normalized error may be

k=1
considerably larger if ||f ||2 is also small. The ¢N which satisfy eq. (4-13),

do not, as we will show, satisfy eq. (4-12) (in general), but the solution
of this "least squares" problem does provide a figure of comparison for
different QN.

If the P; = Ali fl + -= + AMi f@V the problem may be considered an
application of a technique in Factor Analysis called Hotelling's method,
and the problem reduces to determing the coefficients Ai - AM
As the problem is linear, one would expect that the best ¢i's would have this
form. However, in the following this is not assumed, and the @i's are

constrained only to be orthonormal.

Recalling that (x,y) =~/\ x(t) y(t) at and expanding (4-13), we now

T
seek
M N
max Z Z f f fi(t) fi('r) qk(t) (pk(‘l') dtdr. (k-14)
N i=1 K=1 TVt

)
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The eigenfunctions of eq. (4-16) are given by

M
= L
LN Z Meg T3 (4-20)
4 i=1
Where the fi's are normalized, and [ull’ .o uzm] is the Lth eigenvector
of G. Then
M M
1
p 9 =75 ) ), bath (o ) G2
‘ L&k i
vl
1 L1
. T
= " (g5 £50 Duyy - iy, (4-22)
m
=8, : (4-23)

The sum of the squares of the distance from each of the fi (normalized)

to any N dimensional subspace is greater than or equal to the quanitity

N
M- }: M Q-eh)

k=1

M N

Now since Z €.2 >M - Z )j( for any <I>N,

1 —
i=1 k=1

and since the minimum of max (eiz] would be attained if the ei2 equal,

if follows that for any ®N

N
. 2 - -
min max [ei}gM-ZAk—QN (k-25)
N k=1
LA S R M

The eigenfunctions given by eq. (4-20) will usually not be convenient to
work with, and moreover do not usually provide the best functions required

by eq. (4-22). These eigenfunctions could be considered as the "best"
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representation functions in the sense that they satisfy eq. (4-23), i.e.
they provide the smallest average error. Huggins and Young, [27] have
made use of the eigenvectors of the unnormalized correlation matrix to

"essentially" represent the original functions £15 oee fM- The quantity QN

is not claimed to be a greatest lower bound, but it does provide a figure of
comparison for approximating N functions by N orthonormsl functions, selected,
say, for ease of construction.

The simplest example where the bound in eq. (4-25) is attained is the
approximation of any two functions by a single function. The best single

approximating function for a set of two functions {fl, f2] , with (fl, f2) > 0,

£ 4 £
T e

<

: . . - 1 2 Pt ad At
is given by ¢ I f1+ fg I as may be verified directly.

Without some sort of bound such as ., one has no way of judging how

N
well a particular set of orthonormal functions approximates a given set of

signals.

Example L-1

As an example of the determination of the "essential dimensionality" of a
finite set of signals, we consider the normalized signals J: 2 e't, \/— 4 e-2t 3

Jé e-jt, J8 6_%, V1o e'st. Their innerproduct matrix (where (x,y) =

j x(t) y(t) dt) is given by
0

1.0000 0.94%28  0.8666 0.8000  O.T45k
0.9428 1.0000 0.9798 0.94%28  0.9035
0.8666 09798  1.0000 0.9897  0.9682
0.8000 0.9428 0.9897 1.0000 0.9938
0.Th5k 0.9035  0.9682  0.9938  1.0000
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and its eigenvalues are given by

N = L.6586680
A, = 0:3239158
A§ = 0.016940k
A, = 0.000L4k492
A5 = 0.0000267

If only the first eigenfunction is used, the maximum error is found to be
0.18987, and the set of 5 signals may be said to be one-dimensional with

respect to this eigenfunction if an error of 0.18987 can be tolerated. If

N = 2 and the first two eigenfunctions are used as the representative function,

the maximum errror is found to be 0.005599, and for N = 3 the maximum error
is 0.00016556. In any case the dimension ascribed to this set of five

functions depends upon the tolerable error. If it is required, for example,
6

that the maximum representation errror be less than 10° , the dimension of
this set would be 5, since the bound
4
8, = 5 Z \; = 5.3x10

i=

5

6

In the next example, we examine the "goodness" of the approximation of
three signals by two functions which are the best of their class, and compare

the maximum error with the bound Q and the errors obtained by using the

2’
first two eigenfunctions of eq. (4-17).

Example 4-2
_alt
Here we take M = 3 and the three normalized signals to be‘Jéal € s
" -a.t
V8 ¢ t:‘Jéaa € 2 vhere @ = (25- V368 )k and Q, = (25+ v36a)4. The inner

product matrix is
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T 1.0000000 0.883L4522 0.6400000 7]
0.8834522 1.0000000 0.883k4522
0.6400000 0.8834522 1.0000000

with eigenvalues

A\ = 2-609719
Ay = 0.360000
2
For N = 2, 92 = (3 - EE; Ai)/3 = 0.0101. That is, for any two-dimensional
1=

representation, the maximum error must be > 0.0101. If the first two
eigenfunctions of eq. (4-17) are used as representation functions, we find

the errors to be

€ = 0.005692
e22 = 0.018897
532 = 0.005692.

We now compare these results with those obtained by finding the

representation error using the two-dimensional subspace spanned by the

functions €-at, e-Bt. We will show that @ = 2, B = 8 provide the best

at

two-exponential subspace. If we denote by S [e  , e-Bt] the subspace

at

spanned by €~ and e‘Bt, and by || £ - 8 [e-om, e-Bt] || the distance from

f to 8, it turns out that for x =2, B = 8,

mex ||z, -5 2%, <% ||

f 2
TP

This is to be compared with the maximum error of 0.0189 obtained using

= %1 = 0.0123. (4-26)

the eigenfunctions of eq. (4-17) as representation functions. The maximum error
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, -2t -8t . .
obtained using the subspace spanned by e and € is also quite close to

the lower bound Q. = 0.0101 so that in a very real sense these two simple

2
exponentials provide a good approximation. The remainder of this exponential
approximations.

We first meke use of a result derived later in this chapter that the
representation error obtained by approximating the normalized function

at’ e-Bt] is given by

(Y (2 (u-27

For @ = 2, B = 8, the errors obtained by setting a = (25Jf369)/h, L,

J2a ¢t by S [e

(25+‘J369)/h are all equal and have the value %l’ This equal error property

2, B = 8 are the best exponents.

does not by itself necessarily imply that &
However, over the interval (25-~J369)/h <a < (25 +~f369)/h, the equation

2
%%— = 0 is satisfied for a = 2, 4, 8. a = I provides the only maximum. This

is indicated by the sketch in Fig. (4-1). It is seen that any perturbations

about @ = 2, B = 8 must result in a maximum error exceeding %l'

4, % 4 8 Ay

62 as a function of the parameter a
Fig. L4-1

Even though the functions e-2t, €—8t provide remarkably good approximants

to the three original signals, we have not shown that they are the best

functions to use. We do know how well they perform compared to the bound 92
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(which may be too small). In practice, this is all one can do; select a set of
ﬁ representation fUnctién, énd by actual trial, determine if the representation
is satisfactory. We would also 1iks tc have an idea as to how much to expect
from this N-dimensional representation, and the bound in eq. (4-25) provides a
quantitative measure of the goodness of the approximation.

Considerable work has been done using sets of expoential functions as
approximating functions. This has been done primarily and almost exclusively
at Johns Hopking University. Of particular relevance here is the work by
McDonough [28] who attempts to find the best exponents a, for the functions
e-ait, P LI approximate a given signal. This has also been done by

A.A. Wolfe (unpublished) in connection with an adaptive communication system-.

An approach to their problem is to take a sufficient number of the functions

-a.t
e * so that the representation error is considerably smaller than the

allowable error, and then use some perturbation scheme to reduce the number
of representation function required to achieve the required error. The
problem is mathematically straightforward (for approximating a single function)
but a practical difficulty arises in that the approximation errcr has been
noted to be relatively insensitive to perturbations of the ai’ and thus
finding the best ai is computationally very difficult.
In the following, we develop some rather remarkably simple and computationally

useful error expressions for approximation using exponential functions.

4.7 Error Expressions for Exponencial Approximation

In order to appreciate the simplicity and usefulness of the results to
follow, we examine the standard procedures for finding the distance of a
function x from the linear subspace spanned by N linéarly independent .

functions 817 A fundamental result in approximation theory (ACHIESER

. gN.
[8] p. 15) shows that
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) G(X g cee & )
2 _ . 2 _ e N
€ = min||x - ajg a8, oo ey |l ey, - &y (4-28)
&y ‘ -
where
(g,> &) (g &) - - - (g &)
olgy, - gy = (e g85) (& &) - - - (ey 8) | (4.29)
(81: gN) (g2: gN) AR (gN’ QN)
Of course the set of functions g . gy may be orthonormalized yielding
P P e Py in which case the squared error is given by
N
2 2 2
Eellxl®-) (g (1-30)
‘ i=1

The simplicity of this expression is only apparent, since the expression for
the ¢'s in terms of the g's is (see previous chapter) just as involved as
(4-28) and in fact the same amount of labor is involved whether one uses Eq.
(4-28) or Eq. (4-30). Also it, of course, makes no difference how the ¢'s

are obtained from the g's. The space spanned by the ¢'s is the same as that
spanned by the g's. Equation (4-30) has the conceptual advantage of exhibiting
the decreasing in error if the number of ¢'s is increased. In any case,
equations (4-29) and (4-30) are in their simplest form. That is, they cannot,
in general, be arranged to exhibit the part of the error due to use of a
particular g. In particular, if the g's have the form g(tzei), the effect on
the approximation error of perturbations of the parameters 91 can usually

be obtained only by carrying out the operation indicated in Eq. (4-29) for
different velues of the parameters and observing the result. In general,
changing the value of a single parameter would require a complete recomputation

of the error.
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4.8 Single Exponential Approximated by a Set of Exponentials

We derive here an expression for the squared error

-at ~ast -a.t ]2
2_ e ™ ™2 ... ae™n" || s
€ = -
n Ile'at 3 (4-31)
&,
i .
thgt is a single exponential, e? » is to be approximated by a linear cambination

-a_t -a t
of the functions € 1 9 eesy € N, First we compute the error of approximating

a single normalized exponential, f -a/-2ae'at , by another single normalized
: -a.t
expnential functions, 8; =‘Jéai e *

By direct computation, the error is given by

2 2
e 2112112 - (2,8,

Lag,
€-2= l - 2 (u 2
+ (a+a.)2 -52)
i
. 2 <a-ai >2
i ata,
i
We now show that Eq. (4-31) reduces to
-a .t -a_ t
-at 1 N 2
2 [[e™ -ae e 2 2 2
€ =mn at |2 “€ €2 ¢ ‘N
a, ||€ Il
(4-33)
The result is remarkably simple. The effect of adding another expoential
- -a.t -a.t
€ "Wl to the set of approximants € 1 ces € N ;» is to multi e§+l by

the error already obtained. Also, the effect of varying a particular a; is

clearly exhibited, and one only has to recompute the single term ciz- Note
-a,t

that €12 is the normalized error of approximating e_at by € + » and the

total error is the product of these individual errors. This is certainly

not true for arbitrary functions.
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The proof of Eq. (4-33) is readily obtained using a result by Achieser

(8] on approximating the function t% by a linear combination of the functions

t 7, t ess b . A simpler proof can be obtained following the outlines

of the proof we use later on the approximation of a sum of exponentials.

Acheiser's result is that

2
2. e £, 8N 1 B 4-Py
P, Py 2g+1 q}pi+l
gt =, ...t ) i=1

1 (4-34)
a B a.B . -X
where (t7, t7) = “/1 t  t° dt. By making the change of variable t = ¢ °,

0

it is easy to obtain Eq. (4-33) from Eq. (b-34).

L.9 A Sum of Exponentials Approximated by a Set of Exponentials

While the above result is both interesting and useful, a much more
practically significant result would be a simple, computationally useful

expression for the error incurred by approximating a sum of exponentials,

-Oit
£ = Z By € (4-35)
-alt —aNt

by a linear combination of others exponentials e s eee € . As was
remarked earlier, we may use Eq. (4-37) as an approximation to a given
function or set of functions, and by taking M sufficiently large, the
approximation error may be made as small as desired. We would then try to
i's (N < M) in order to achieve a prescribed allowable error.f

A simple error expression for the approximation of a sum of exponentials

chose the N a

can in fact be obtained, but is apparently somewhat harder to show.

A
This procedure is justified since if f is an approximant to g and f is an
approximant to f, than by the triangle inequality,

A A A 2
la-£1]2 =] g-ese-2 || 2 < |le-t]l+]] -2 |15

apughly speaking, this says that if f is close to g and ? is c¢lose to f, then
I is close to g.
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-a.t -a.t
First, we suppose that the set of approximating functions e s €
-8t
€ N are orthonormalized in any manner yielding Pt Py We wish to
approximate a function
M 'ait M
f = z B € = Z By fi(t) (4-36)
-alt -gnt

(We may consider that the subspace spanned by € 3 eee € is arbitrarily

élose to a set of functions we are attempting to characterize ).

The approximation error is given by Eq. (4-30)

N
Polell®- ) (ng)? (4-37)
k=1
M N M 2
AN AT (1-38)
i=1 k=1 i=1

M M M M
Z Z BB, (£;55) - Z Z Z B;By (f;9 ) (£,q)  (+-39)
i=1 j=1

k=1 i=1 Jj=1

By rearrsnging the terms of this expression, we may write

= lg 112 - Z (e« 22 { 12 112 - Z (e } + -

k=1 k=1
N
2 2 _ 2
el { g1l 1;(%‘) }
20,8, { (£,,)- Z (1) (£5m) } + 28,85 {(,2)- i(fmﬂfﬂ) }e
k=1
+ e + EBM lB {( M-1 M é(fM lcpk)(quak)} ()4._14.0)
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So far, we have not made use of the exponential nature of the functions, i.e.,
Eq. (4-40) holds for the approximation of the sum of arbitrary functions fi by
arbitrary orthonormal functions @ - We note that Eq. (4-40) involves only the

coefficients in Eq. (4-36), the eia, and terms of the form

(,z,) - i (¢ ) (59, (h-h2)
k=1

which may be written as

N N
(fy - ) (580 B0 % - ) (5a) @) (1-t2)

then using the Schwartz inequality

N

N
(fa - Z(fa(pk) P fb- Z(faq)k) ¢k) < Veageb2 . (4-43)

We have not yet made use of the exponential nature of the functions. We show

if the functions are exponentials, that

N
(£.f,) - z (£ @ ) (£ m) = (£,,5,) € & (4-Lk)
k=1
N 2 -8y N -8y
where€a=-[—-l— CE_'TGT)’eb:_I—]— ‘?_*_ai);and
i=1 i=1
hence eq. (4-40) may be written as
M M
2 . -
e = }Z BB, eiej(fifj)> (4-45)
i 3

a Qradratic form well suited for hand or machine computation. Also the effect

of varying the ai's is clearly exhibited.
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The remainder of this section will be devoted to proving: If
£, = é-at £, = e-:t , and the @{ are obtained by orthonormalizing'the set
of functions e—al 3 seey e-&N )
N
then (fa’fb> - Z (faq’k) = (fa’fb) €afpb 4 (4-46)
' N & - a, ‘N b - &,
where €, = ﬁ <mi )a.nd eb—ﬁ (5—;—;1- ) ’ (4-47)
i=1 i=1

w©

and (x,y) = J; x(t) y(t) at.

The means by which the P are obtained from the linearly independent
-a.t -a, t
set of functions € 1 3 ey € is of course immaterial. Whatever

orthonormalization technique is used, the B will have the general form

N -ait
) = ) mge L (-48)
i=1
N
Then (fa,q:k) = Z a‘ki_a%a_._ ’ (4-49)
i=1 + '
N
(B9) = ) o e (k-50)
i=1 +

N N
md (fum) e = | Zlaki 2| Zl et biai] - (50

1

We can write Eq. (4-51) as
pk(a, b; 85 voo aN)

ﬁ (a+a.i) Tli[ (b+ai)‘

i=1 i=1

(k-52)

(fa:cpk) (fb’(Pk) =
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where Py is a polynomial of degree no higher than 2N (e.e. the highest

exponents of a and b are no higher than N). Carryinghout the summation

indicated in Eq. (4-45),

. N N P (& b: a aN)
_ k ) 5 l) AR
@) lea)eg) - ) = — (5-53)
=1 ' k=1 T—T ata, T—T b+a,
i i
i= i=1
) PN(a, b; 8y oen aN) , (4-55)
N
T—l- (a+ai) T_[ (b+a )
i= i=
N
where PN = j{: gk is also a polynomial of degree < 2N since each Py was of
=1 :
degree no higher than 2N. Then Bq. (4-45) becomes
P (a,b; a , «.. a.)
I bt A (4-55)
atb N N :
-|——[ (a+ai) -l-—‘ (b+ai)
i=1 i=1
P’ (a, b; a., .. &)
- inidiadhe kil S (4-56)

a+b

N N
T_T (a+ai) T-T (b+ai)

i=1 i=1

Now if a or b equals any of the a;, €q. (4-55) becomes zero since the appro-
ximation error is zero (see Eq. (4-43)). This means that the polynomial

1 s e e . N N
P’y is divisible by Tj— (a-ai) and T—T (b-ai), or

py= Ay 1y (aay) T (o-ay) (4-57)

i=1 i=1
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We have then (4-58)

N
i T e TT (5-ay)
(£,8) - ) (£, )( )= (£ ,f .
e’ Z /Mo P & T]_(a+a) [ (b+b)

We need only to find AN If we let both a and b become arbitrarily large, we

see from Eqs. (4-48) and (4-49) that

lim (£, ) (f@) = O , (4-59)

a,b, =

Also, we see that

N N
Lin ];T (a—ai) TNT (b-ai) (1-60)
a,b, = T—[ (a+ai) I | (b+ai)

Thus from Eq. (4-57), Ay = + 1 independent of N. We have shown then that

2) - Z (2,00 (5,0 = (£,8) €, - (4-61)

where e&2 and € 2 represent the squared distance of ~r2a e-at and Jav e-—at

b -alt -a2t -aNt
respectively, from the subspace spanned by the functions € s € 3 ++ €

That is, ea2 and €b2 are the normalized errors.

By setting a = b, Eq. (4-33) is obtained. However, Eq. (4-61) cannot be
obtained from Dq. (4-33). Note that the sign of €, or e is determined by the

2
defining Eq. (4-47) and is not i*/-ea

4.10 Maximum Error of Approximating Sum of Exponentials

The squared norm of a function

M -t
£(t) = Z B, £,(t), £;(t) =¢ * (4-62)

i=1
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M M
is given by || £ | 2. Z Z Biﬁj (fifj)' The normalized squared error of

i J
approximating a function of the form (4-42) is obtained by dividing Eq. (4-L5)

2
vy || £ 1]
M M ,
. }: E: Biﬁjeiej(fi,fj)
A (4-63)
- M M
i
In matrix notation, we write
T
2. BEFEP (4-64)
* BT FB
where
— Bl - - ) o
B = B, E = c (4-65)
. 2
| Pu_ 0 M
and - ‘_T
(£,8))  (£,85) « -+« - (£,5))
F = : (4-66)
(£ypfy)  (Epfp) o v o (fpf)y)

F is positive definite since its determinant is a Grams determinant. We want

to find the maximum error incurred in approximating a sum of exponentials by

-alt —aNt
elements of the subspace spanned by the functions € s e+ € . This

maximum error determines the dimensionality of the set of function
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-a.t

M ,
FE =«{f(t): f(t) = Z B, € 1, B. real nmnbers}
i T G L *
=]
—alt' --aNt
with respect to the set of functions ¢ 9 e+ € , where dimensionality

is as defined in Eq. (4-5 ). We seek then the maximum of

T
B EFED (1-68)
R

A theorem by Courant [42] p. 66, states that the maximum of

xT A x

x P x

is given the largest eigenvalue of the matrix
Pt a (4-69)

where P is definite .

In our case then, we seek the largest eigenvalue of
-1
F~ EFE. (4-70)

This largest error may not be attained for a particular ensemble, as the ﬁi
may not take on all possible values. Eq. (4-70) then represents an upper
bound on the representation error. Practically, it would probably be more
convenient to compute the actual errors using Eq. (4-45). This problem could

be pursued farther by seeking

min { largest eigenvalue of FLEF E) (4-71)

a,, 1 =1, N

i’
but as was remarked earlier, the approximation error is relatively insensitive

to small perturbations of the 8, and also it is shown in the following

discussion that such a minimal representation is not really needed. The
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goodness of the approximation for a given N may be estimated using Eq. (4-25)
where the f's are given by Eq. (4-62). The largest eigenvalue of Equation (%-70)

represents the largest normalized error of epproximating an element of the
--alt -aMt

subspace spanned by € y eeey €
-alt -aNt
€ g sesy € .

by an element of the subspace spanned by

Exgggle

To illustrate the simplicity of computation afforded using the derived

error expressions, we consider the approximation of fl = e-t, f2 = e-3t,
-5t -2t _

f5 = ¢ ~° by the subspace spanned by g =€ and g =

are the normalized approximation errors and the comparison of (fi, fj) and

Of interest

A n
(fi’ fj)' Using the expressions derived above we find immediately that

1 1+2>( "+é’€12 %5
3+2 :) <. 5’ €2 ° - %555

3" 5+2>< > 1’632'115111

m
1

m
no
It

and
A A 1 1 Ll
(£,85) = (£,8,) [1-¢ e,1= T+ 5y ) = 175
A A 1 1 22
(£,55) = (£,85) [L-ee5)= g1l -y | = (@)
AAL 1 1 - 92
(£0r25) = (£15) [ -y 651 = 50+ 55yy! = SY0ED) -

For comparison, we compute €, using

1
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e, 1% cley, &,

1 (fl’fl) (fl’gl) (fl’g2)

e, |

|2 (gl’fl) (81)81) (81182)

(82;fl) (82181) (32182)

(g,58)) (g-8,)

(g2’gl) (gE’gE)

O] o

A L

= W

N+ -
3

-
NH
(o0 [0l

e
oN-

ol
(oo Io

Expanding the above determinants and dividing, yields finally

and it is seen that there is more labor involved in finding only one of the

normalizal errors using this procedure than finding all three of the errors
A A A A

and the three (fi’fj) using the first technique. Moreover, (fi,fj) cannot

be found using this latter method.
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o2 AN .
The quantities € (fi’fj) may also be found by orthonormalizing the

set of function 81’82 yieiding wl, *2 and computing

2 2
e 112 =) (v
J

2
e, 1)

and f, = (fi,*l) ot (fi’*g) ¥, One must not only find y, and y,, but the
fi's must be found in order to compute (fi,fj). For comparison, we compute
(fl’fg)' The §'s may be found by orthonormalizing the set of function 81785
using the Gram-Schmidt procedure or the equivalent Kartz procedure. One set of

¥'s is

¥ = 2¢ "2t

Vo ='~/-8[-2e-2t + je'ht].

Then (fy,¥,) = f 2e™2% ¢~Pat = 2/3
0

(fl"l'e) = f ¢t x/—8‘[--2e'2t + 55"%] it =8 [ 3‘_.?5_-
0

® -3t -2t 2
(f2,¢1)=f 2% ¢ at = Z

0
T -3t 2t L bt 1
(f'axig) -‘/‘O e™* 8 [-2¢ +3¢77°] at =8 ( 35?.

i'}1= sH+VB(E)
?2= ATRRLEE  RRA
finally,
(pl,lf\e) = %5 - Tl%'(?s) = 11*—17*5 . This result agrees with that

found using the first method, but was obtained with considerably more effort.
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If now the exponents of g and g, are changed in an attempt to obtain a better
representation, the latter two methods require a complete re-computation,
while the first method allows the desired quantities to be found with a

minimum of effort.

k.11 Signal Estimation

As was remarked earlier in this chapter, several authors have made use
of the idea of characterizing a received signal x by its projections onto a
known set of signals QN. If a sufficient number of the p; are used, and
the @; are complete in the space from which x is taken, then x can be charac-
terized to within an arbitrarily small degree of accuracy. If the signal x

was known exactly, the optimum receiver would be a filter matched to x. If
N
xN(t) = j{: ai¢i(t) is an approximation to x relative to the P; s and the

receiver is a filter matched to Xy then the system is subject to the errors
considered in Chapter II. Even if x is N-dimensional relative to the @i's,

the measurements of its coordinates are invariably corrupted by noise so that
an exact characterization of even a finite-dimensional signal is not possible
and one can only make estimates of the coordinates. If we assume that N is
sufficiently large so that xN(t) approximates any possible received signal x(t)

within a prescribed tolerable error, then the problem becomes that of estimafihg
N
the a, in the expression xN(t) = E: ai¢i(t). The estimate of xN(t) is denoted
N
== \ i 'g,
by xN(t) j{: aiQi(t) where the a,'s are the estimates of the a,'s. The

received waveform is considered to be of the form

y(t) = n(t) + xi(t)
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where n(t) is the additive noise. The simplest possible estimate of &y is

to take

]

%

T T T N‘
f y(t) @ () at = f u(t) o, (t) + f ( Z a0 (t) ) g (t)
0 0

0

n

gt %

If the noise is white and gaussian, this estimate is a conditional maximum
likelihood estimate. For a detailed treatment of estimation of linear signal
parameters see Glazer [15] and Parks [31]. If the noise is white zero mean

with spectral density No’ we have that

since the @ are orthonormal. In other words, the same amount of noise
corrupts the measurement of each signal coordinate. If the signals to be

estimated have the same energy
N

E= foNE(t)= Z aie
0

then, in general, the larger the required N, the smaller (on the average) are
the ai, and since the measurement noise remains the same, one would like"to
use the smallest N consistent with the allowable error. For any finite N,
however, we may take a sufficient number (M) of observations and make the
effect of the noise arbitrarily small. This may be done by taking the sample

mean
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M
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SR

Since the noise is white zero mean and the w; are orthonormal, the nk are

J
uncorrelated and

E[ukM]= 0

- A
r,[u_k_M] = NO/M.

(4-73)

By teking M sufficiently large the variance associated with the estimate of
an individual coordinate may be made arbitrarily small. However, the quantity

of interest is the error of approximating QN where we define
A 2
f[xN(t)-xN(t)]
€ =

[ tgten®

N
n, 2 n, 2
f. 1 i

i
E

1=

2

a,
1

]

N
where E = N/.xNe(t) = j{: ai2 is the total signal energy. Without loss of

generality we take NO = 1. E then represents the signal-noise ratio. Write
N

z = }E:ngg. If the noise is gaussian, z is the sum of the squares of N
4

independent zero mean, unit variance gaussian random variables. The probability
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density function p(z) is given by the well-known chi-square density function

p(z) = S z'§ ) le- 2 .

o (20r(3)

Recall that N is the required number of signal coordinates. Since the error

€ is always greater than zero, & reasonable criterion is to choose a tolerable
error y and decide on a confidence level P where P is the probability that

€ <yor z <+yE. That is,

YE

P= “/; p‘z) dz.

If M observations are made and an estimate based on the M observations are
made according to Eq. (4-72), it is seen from Eq. (4-73) that the effect of
making M observations is to‘increase the effective sign&l—noise ratio by a
factor of M. That is, the probability that after making M observations the

normalized approximation error is less than or equal to y is given by

MyE
PM=fO p(z) dz
MyE E-l .2
P = 1 z2 € 2 dz
MUy 23pX
2 2

This function is well tabulated. For instance the "Tables of the Incomplete
Gamma-Function" edited by Karl Pearson may be used if in his I(u,p) we set

N
p=7-1and ME = p VN, then

I(u,p) = PM .

Recall that N is the number of coordinates required for a given error using a

particular set of QN. The number N will be different for different choices of
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representation functions. For a particular class of signals, choosing the
representation functions to be Laguerre function may require N = 20 while the
same approximation error might be achieved by using only 5 sinusoids. In figure
(4- 2 ) we plot P vs MyE with N as the parameter, and in figure (4-3 ) we plot
MyE vs‘N with P as the parameter. The significance of being able to reduce the
number os signal coordinates by proper choice of representation functions
depends to some extent on the nature of the problem. If one may make any
number of observation, then the signal may be estimated within an arbitrarily
small error for any value of signal-noise ratio. However, the characteristics of
the channel may be changing at such a rate that the signal is "essentially

the same" for only a small number of cbservation intervals. In this case, in
order to meet the allowable error requirement with & prescribed confidence
level, one can either increase the signal-noise ratio (supply more transmitter
power) or attempt to reduce the required number of signal coordinates. The
choice of (the allowable error) depends upon the type of signaling scheme.
Figures (2-6), (2-7), (2-8) in Chapter II indicate that if one is using one
signal (the on-off case) an approximation error of 0.1l may be satisfactory,
while if the system attempts to utilize two orthogonal signals, y must be an
order of magnitude smaller to ensure satisfactory performance. For P = 0.95
(the probability is 0.95 that the approximation error is within the allowable
error requirement) the reduction of the required number of signal coordinates
from say 20 to 10 allows a reduction of the quantity MyE from about 31.5 to
about 18.3, a factor of 1.72. This is equivalent to increasing the signal-noise
ratio by a factor of 1.72 for fixed M and y, or if y and E are fixed this
reduction in the number of required signal coordinates allows the number of
observations to be decreased by a factor of 1.72. Depending upon the signal-

noise ratio, this reduction in M may or may not be significant. If the signal-
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noise ratio is high, M may already be small (say 5) and reducing the number of
observation to 3 by a better choice of signal coordinates is probably not
worthwhile. However, if the signal-noise ratio is low, the reduction of M from
say 32 to 18 (a factor of 1.72) is significant. It is seen from figures (L4-2)
and (h-3) that a search for a minimal nﬁmber of signal coordinates is in ’
genefal not really needed. For example, if the allowable error requirement
could be met with a minimum N = 16 rather than N = 20, the quantity MyE is
decreased only by a factor of about 1.1, and for the same signal-noise ratio
as in the previous case, would mean a reduction of M from 32 to 30; a decrease
hardly worth the effort of seeking any better signal coordinates. This bears
out the statement made earlier in connection with exponential function
approximation that a minimal representation was not really needed. However it
is seen from the above that a poor choice of signal coordinates (i.e. many
more than are necessary) can materially affect system performance.

The techniques of Chapter III for constructing transmitted signals to
produce desirable received signals depended upon being able to measure the
inner produce ( f ei(t) ei(t) at >of the channel's responses to the
generating signals? The inner products can be measured in any manner. In

general this can be done by approximating ei by

N
% = Z %k Y
k=1
N
(ei’e,j) = Z Bik %k
J

If the set of *k is complete, by taking N sufficiently large the above
approximation can be made as close to equality as is desired. If the channel
characteristics do not change with time, then of course an arbitrarily large

amount of time may be spent making measurements to an arbitrary degree of
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accuracy using any finite number of signals coordinates. In this case, the
problem of optimum or even "good" choices of signal coordinates is not a
factor in the system design.

Actually the channel characteristics do change with time and it is this
phenomena that "adaptive" systems are supposed to combat. However, to the
suthors knowledge, there has been no analysis made of a system where the
changing characteristics of the channel is taken into account. That is, the
system "adapts" to a fixed but unknown signal (or signal parameters). Even
if the signal is considered to be a sample function from a random process, once
it is selected it is fixed. It is merely assumed that if the characteristics
vary "slowly" enough the system will “"track" the slowly changing signal.

It is only when the measurement must be made in a given number of observations
(before the channel characteristics change "appreciably") that consideration

must be given to the selection of signal coordinates.

Summary

In this chapter an attempt was made to clarify and make more precise
the concepts associated with "best representation functions and niminal
finite-dimensional signal representation. It was seen that the intuitive
notion of a set of signals being "approximately finite dimensional"” raises rather
deep mathematical problems when the statement is made more precise. The
selection of a best or minimal set of representation functions for an
arbitrary ensemble of signals is in general not possible. Not the least of
the difficulties associated with such a problem is in adequatley describing the
ensemble. In an actual physical situation, a complete description, and hence
a truly minimal representation is precluded since one is able to observe only
a finite number of the members of the ensemble. One can only assume that the

observed members of the ensemble are "representative" of the ensemble in the
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sense that if a set of approxim&ting function is constructed to approximate
the observed members of the ensemble, the approximation is also acceptable
for the other members of the ensemble. In this connection, methods were
developed for obtaining an estimate of fheAgoodness of any N-dimensional set
of approximating functions based on the obéervation of M members of the
ensemble.

If an ensemble of signals is initially characterizéd by its projections
onto a set of M exponential functions e—a t, ceey e- ’ where M is taken
sufficiently large to ensure adequate characterization, the dimensionality of
the representation may be reduced by approximating signals of the form

-at . - b '

aNt
+ In this connection,

le +...)\Ne

very simple and computationally useful expressions were developed for the

by functions of the form f = A

error
2 A2
e =] e-£]]

The selection of the signal coordinates (or the representation functions)

in connection with "adaptive" communications problems is seen to be a relevant
factor when observation or measurement time is limited, although a minimal

representation is not required.




Chapter 5

CONCLUDING REMARKS

The selection of optimum signals and the attending approximation error
has been based on the assumption that the optimual receiver was a correlator
or matched filter. If the statistics of the noise is gaussian, the optimum
receiver does have the form of a matched filter. If the noise is not gaussian,
the form of the optimum receiver is not known except for a few special cases
(e.g. Rayleigh noise). This lack of knowledge of the form of the optimum
receiver for non-gaussian noise precludes the selection of optimum signals
for these cases. The error due to filter and signal mismatch computed in
Chapter II is valid for coherent detection or arbitrary signals. The
extreme sensitivity of systems designed to receiver orthogonal signals is more
likely to occur when the signals occupy the same time interval and the same
bandwidth. FSK, for example, suffers only slightly from mismatch error when
the two frequencies are sufficiently for apart. A study of some interst would
be the sensitivity of systems designed to receive more than two orthogonal
signals. The technique used here for the binary case should prove useful for
such an investigation.

For channels having bandwidths comparable to those of the transmitted
signals, considerable waveform distortion may be present. This waveform
distortion provides one source of mismatch error considered in Chapter II.

In Chapter III, computationally simple techniques were developed for con-
structing transmitted signals so that the received signals would, for example,

be orthogonal. The receiver may be a discrete receiver, distinguishing
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between the received signals by using, for example, a number of time samples
of the waveforms. However, the transmitter must transmit through the channel
analog waveform, (i.e. not a sequence of numbers), so that when the signals
pass through a waveform-distorting channel, the signal construction must
be bases on analog waveforms even though the receiver operates only on the
time samples. The procedure given here is valid for coherent reception.
That is, the signals are constructed to have a prescribed inner product matrix
for a given observation interval. If the observation interval is slightly
different from the interval over which the signals were designed to be, say,
orthogonal, the resulting inner product matrix may be different from the
desired one. That is, one would also like the autocorrelation énd cross-
correlation functions to be such that imperfect‘synchronization does not
materially affect the performance of the system. A study combining the
techniques developed in Chapter III with the correlation properties of the
signals would be of considerable interest. 1
The problem of finding 'best" finite-dimensional subspace for representing
signals from a given class was seen to be revalent to the detection problem if
the number of coordinates is fixed, and the signals are known to be of a
particular class. The number of coordinates required to yield a good re-
presentation of the signal has no effect on the performance of the system.
That is, if Ny's or My's are required to represent the signals, both produce
the same test statistic. If however, the number 6f coordinates is not
sufficient to represent the signal, the discrete receiver is subject to
the type of error considered in Chapter II. In adaptive receivers where
estimates are made of the received waveforms, the selection of signal
coordinates enters the problem somewhat differently. Here the number of
observation intervals required to form a good estimate of the signal waveform

depends upon the number of signal coordinates required. It was shown that
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for the important case of conditional maximum likelihood estimates the
number of reguired coordinates is not critical,although the number of
required signal coordinates plays an important ade when the channel charac-
teristics are changing in such a manner that the signal may be assumed to be
essentially the same for only a small number of observations.

However, actually finding "best" finite-dimensional representations for
given classes of signals, where the problem is precisely stated, is at best
difficult, and in any practical situation probably impossible. The problem
has received comparatively little attention from mathematicions with apparent
good reason. The relative merits of any set of approximating signals must
be judged in a particular application. In certain applications exponential
functions have proven to provide satisfactory approximations with a remarkably
small number of exponentials. Aside from their usefulness in particular
applications, exponential functions possess many useful properties as
demonstrated in the references. The error expressions derived in Chapter IV
further extends the usefulness of exponential function approximation. In
this connection, an investigation of other parametric families of functions
having epproximation properties similar to those of exponentials may prove

to be of significant value in theoretical investigations.
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APPENDIX

The following definitions are taken from Chapter I of [8].

[Al] The Concept of Metric Space. A set E having the elements x,y,z,...
‘ is known as a metric space, and the elements are called points
of the space, if for every pair of elements x,y there can be
found a corresponding non-negative number D[x,y] which is called
the distance between the points x and y, and which satisfies the
following conditions:

A. D[x,x] =0

B. DI[x,y] = Dly,x] >0 (if x # y)

C. D[x,z] <D[x,y] + Dly,z] (triangular inequality)

[A2] The Concept of Linear Normalized Space. A set E having the elements

X,¥s%Zy+-+ is called a linear normalized space, the elements themselves
points, vectors, or functions, if
1. There is defined in E an operation, which we called
addition and denote by the symbol +, in respect to
which E forms an abelian group; the zero element of the

group E will be denoted by 0;

2. A multiplication of the elements of the set E by
(real or complex) numbers @, B, , ... is defined so that

a(x+y) = ax+ay
(a+B)x= ox+By

a(px) = (oB)x
l. x=x
. x=0
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3. To every element x € E there corresponds a certain positive number
||x [ called the norm of the element X, which satisfies the conditions
le ]I =0 if and only if x = 0
o || =fa] [[x]]

[(A3]

(Ak]

ey [ <[l= 1] +]lx ]

The space I¥ (p >1). By IP[a,b] is meant the totality of all functions

measureable in the interval [a,b], whose absolute value to the pth

power is integrable in the sense of Leberque. In this connection,
addition and multiplication with complex numbers are to be considered
in the ordinary sense. Two elements x = x(t), y = y(t) e I® are
identified if the equality x(t) = y(t) holds almost everywhere.

The norm is defined by

b 1
x| - {f |x<t>|P}P
2

It cen be shown that IP is a linear normalized space. For p=2,1L
denotes the space of function with finite energy. Without any practical
loss of generality, the function may be considered to be piecewise

continuous and the integral teken in the normsl Riemann sense.

Uniqueness of the Approximation. The expression Al g, + ot Kn &,

which furnishes the best approximations of the element x is uniquely
determined when the space is strictly normalized, i.e. if the equality
sign in the inequality

xsy [ <[] + [yl (x # 0, ¥y #0)

holds only for y = ox (a > 0).
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The space Lp(p > 1) furnishes an example of & strictly normalized space,

is not strictly normalized.

Hilbert Space. Achieser defines Hilbert space as a linear space (i.e.

the first two conditions of [A2] are fulfilled) in which for every pair
of function x and y there is a corresponding number (x,y) (we restrict
ourselves here to real quantaties) called the scalar product (or inner

product) of the functions x and y, and satisfying the following conditions.

a) (v;x) = (x,¥)

®) (a:x:'-‘aaxaiY) = al(x:.‘:') + ag(xgy.‘:’)
c) (x,x) >0

d) (x,x) = 0 if and only if x = 0

Hilbert space represents a linear normalized if we put
1
H=ll = (&x)2 .

The space L2 represents an example of a Hilbert space if we put

b
(x,y) = f x(t) y(t) at.
a



